| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppggic.o | ⊢ 𝑂  =  ( oppg ‘ 𝐺 ) | 
						
							| 2 |  | subgrcl | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | subgrcl | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝑂 )  →  𝑂  ∈  Grp ) | 
						
							| 4 | 1 | oppggrpb | ⊢ ( 𝐺  ∈  Grp  ↔  𝑂  ∈  Grp ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝑂 )  →  𝐺  ∈  Grp ) | 
						
							| 6 | 1 | oppgsubm | ⊢ ( SubMnd ‘ 𝐺 )  =  ( SubMnd ‘ 𝑂 ) | 
						
							| 7 | 6 | eleq2i | ⊢ ( 𝑥  ∈  ( SubMnd ‘ 𝐺 )  ↔  𝑥  ∈  ( SubMnd ‘ 𝑂 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑥  ∈  ( SubMnd ‘ 𝐺 )  ↔  𝑥  ∈  ( SubMnd ‘ 𝑂 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 10 | 1 9 | oppginv | ⊢ ( 𝐺  ∈  Grp  →  ( invg ‘ 𝐺 )  =  ( invg ‘ 𝑂 ) ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝐺  ∈  Grp  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  =  ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥  ↔  ( ( invg ‘ 𝑂 ) ‘ 𝑦 )  ∈  𝑥 ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝐺  ∈  Grp  →  ( ∀ 𝑦  ∈  𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥  ↔  ∀ 𝑦  ∈  𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 )  ∈  𝑥 ) ) | 
						
							| 14 | 8 13 | anbi12d | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑥  ∈  ( SubMnd ‘ 𝐺 )  ∧  ∀ 𝑦  ∈  𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥 )  ↔  ( 𝑥  ∈  ( SubMnd ‘ 𝑂 )  ∧  ∀ 𝑦  ∈  𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 )  ∈  𝑥 ) ) ) | 
						
							| 15 | 9 | issubg3 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑥  ∈  ( SubMnd ‘ 𝐺 )  ∧  ∀ 𝑦  ∈  𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( invg ‘ 𝑂 )  =  ( invg ‘ 𝑂 ) | 
						
							| 17 | 16 | issubg3 | ⊢ ( 𝑂  ∈  Grp  →  ( 𝑥  ∈  ( SubGrp ‘ 𝑂 )  ↔  ( 𝑥  ∈  ( SubMnd ‘ 𝑂 )  ∧  ∀ 𝑦  ∈  𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 )  ∈  𝑥 ) ) ) | 
						
							| 18 | 4 17 | sylbi | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑥  ∈  ( SubGrp ‘ 𝑂 )  ↔  ( 𝑥  ∈  ( SubMnd ‘ 𝑂 )  ∧  ∀ 𝑦  ∈  𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 )  ∈  𝑥 ) ) ) | 
						
							| 19 | 14 15 18 | 3bitr4d | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ↔  𝑥  ∈  ( SubGrp ‘ 𝑂 ) ) ) | 
						
							| 20 | 2 5 19 | pm5.21nii | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ↔  𝑥  ∈  ( SubGrp ‘ 𝑂 ) ) | 
						
							| 21 | 20 | eqriv | ⊢ ( SubGrp ‘ 𝐺 )  =  ( SubGrp ‘ 𝑂 ) |