Step |
Hyp |
Ref |
Expression |
1 |
|
oppggic.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
2 |
|
subgrcl |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
3 |
|
subgrcl |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) → 𝑂 ∈ Grp ) |
4 |
1
|
oppggrpb |
⊢ ( 𝐺 ∈ Grp ↔ 𝑂 ∈ Grp ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) → 𝐺 ∈ Grp ) |
6 |
1
|
oppgsubm |
⊢ ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 ) |
7 |
6
|
eleq2i |
⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) |
8 |
7
|
a1i |
⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) ) |
9 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
10 |
1 9
|
oppginv |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) = ( invg ‘ 𝑂 ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝐺 ∈ Grp → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ↔ ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝐺 ∈ Grp → ( ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) |
14 |
8 13
|
anbi12d |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
15 |
9
|
issubg3 |
⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
16 |
|
eqid |
⊢ ( invg ‘ 𝑂 ) = ( invg ‘ 𝑂 ) |
17 |
16
|
issubg3 |
⊢ ( 𝑂 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
18 |
4 17
|
sylbi |
⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
19 |
14 15 18
|
3bitr4d |
⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) ) |
20 |
2 5 19
|
pm5.21nii |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) |
21 |
20
|
eqriv |
⊢ ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝑂 ) |