Metamath Proof Explorer


Theorem oppgsubm

Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppggic.o 𝑂 = ( oppg𝐺 )
Assertion oppgsubm ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 )

Proof

Step Hyp Ref Expression
1 oppggic.o 𝑂 = ( oppg𝐺 )
2 submrcl ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd )
3 submrcl ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) → 𝑂 ∈ Mnd )
4 1 oppgmndb ( 𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd )
5 3 4 sylibr ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) → 𝐺 ∈ Mnd )
6 ralcom ( ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧𝑥𝑦𝑥 ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 )
7 eqid ( +g𝐺 ) = ( +g𝐺 )
8 eqid ( +g𝑂 ) = ( +g𝑂 )
9 7 1 8 oppgplus ( 𝑧 ( +g𝑂 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑧 )
10 9 eleq1i ( ( 𝑧 ( +g𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 )
11 10 2ralbii ( ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( +g𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑧𝑥𝑦𝑥 ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 )
12 6 11 bitr4i ( ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( +g𝑂 ) 𝑦 ) ∈ 𝑥 )
13 12 3anbi3i ( ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( +g𝑂 ) 𝑦 ) ∈ 𝑥 ) )
14 13 a1i ( 𝐺 ∈ Mnd → ( ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( +g𝑂 ) 𝑦 ) ∈ 𝑥 ) ) )
15 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
16 eqid ( 0g𝐺 ) = ( 0g𝐺 )
17 15 16 7 issubm ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ) ) )
18 1 15 oppgbas ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 )
19 1 16 oppgid ( 0g𝐺 ) = ( 0g𝑂 )
20 18 19 8 issubm ( 𝑂 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( +g𝑂 ) 𝑦 ) ∈ 𝑥 ) ) )
21 4 20 sylbi ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( +g𝑂 ) 𝑦 ) ∈ 𝑥 ) ) )
22 14 17 21 3bitr4d ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) )
23 2 5 22 pm5.21nii ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) )
24 23 eqriv ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 )