Step |
Hyp |
Ref |
Expression |
1 |
|
oppggic.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
2 |
|
submrcl |
⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) |
3 |
|
submrcl |
⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) → 𝑂 ∈ Mnd ) |
4 |
1
|
oppgmndb |
⊢ ( 𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) → 𝐺 ∈ Mnd ) |
6 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
9 |
7 1 8
|
oppgplus |
⊢ ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) |
10 |
9
|
eleq1i |
⊢ ( ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) |
11 |
10
|
2ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) |
12 |
6 11
|
bitr4i |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) |
13 |
12
|
3anbi3i |
⊢ ( ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) |
14 |
13
|
a1i |
⊢ ( 𝐺 ∈ Mnd → ( ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
17 |
15 16 7
|
issubm |
⊢ ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) ) ) |
18 |
1 15
|
oppgbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
19 |
1 16
|
oppgid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝑂 ) |
20 |
18 19 8
|
issubm |
⊢ ( 𝑂 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
21 |
4 20
|
sylbi |
⊢ ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
22 |
14 17 21
|
3bitr4d |
⊢ ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) ) |
23 |
2 5 22
|
pm5.21nii |
⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) |
24 |
23
|
eqriv |
⊢ ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 ) |