Step |
Hyp |
Ref |
Expression |
1 |
|
oppgtmd.1 |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
2 |
|
tmdmnd |
⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ Mnd ) |
3 |
1
|
oppgmnd |
⊢ ( 𝐺 ∈ Mnd → 𝑂 ∈ Mnd ) |
4 |
2 3
|
syl |
⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ Mnd ) |
5 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
7 |
5 6
|
tmdtopon |
⊢ ( 𝐺 ∈ TopMnd → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
8 |
1 6
|
oppgbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
9 |
1 5
|
oppgtopn |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝑂 ) |
10 |
8 9
|
istps |
⊢ ( 𝑂 ∈ TopSp ↔ ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
11 |
7 10
|
sylibr |
⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ TopSp ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
13 |
|
id |
⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd ) |
14 |
7 7
|
cnmpt2nd |
⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑦 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
15 |
7 7
|
cnmpt1st |
⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
16 |
5 12 13 7 7 14 15
|
cnmpt2plusg |
⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
18 |
|
eqid |
⊢ ( +𝑓 ‘ 𝑂 ) = ( +𝑓 ‘ 𝑂 ) |
19 |
8 17 18
|
plusffval |
⊢ ( +𝑓 ‘ 𝑂 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
20 |
12 1 17
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
21 |
6 6 20
|
mpoeq123i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
22 |
19 21
|
eqtr2i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( +𝑓 ‘ 𝑂 ) |
23 |
22 9
|
istmd |
⊢ ( 𝑂 ∈ TopMnd ↔ ( 𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) ) |
24 |
4 11 16 23
|
syl3anbrc |
⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd ) |