Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| oppgtset.2 | ⊢ 𝐽 = ( TopSet ‘ 𝑅 ) | ||
| Assertion | oppgtset | ⊢ 𝐽 = ( TopSet ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 2 | oppgtset.2 | ⊢ 𝐽 = ( TopSet ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 4 | 3 1 | oppgval | ⊢ 𝑂 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos ( +g ‘ 𝑅 ) 〉 ) |
| 5 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 6 | tsetndxnplusgndx | ⊢ ( TopSet ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 7 | 4 5 6 | setsplusg | ⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑂 ) |
| 8 | 2 7 | eqtri | ⊢ 𝐽 = ( TopSet ‘ 𝑂 ) |