Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
opphllem1.s |
⊢ 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) |
9 |
|
opphllem1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
|
opphllem1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
11 |
|
opphllem1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
12 |
|
opphllem1.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐷 ) |
13 |
|
opphllem1.o |
⊢ ( 𝜑 → 𝐴 𝑂 𝐶 ) |
14 |
|
opphllem1.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐷 ) |
15 |
|
opphllem1.n |
⊢ ( 𝜑 → 𝐴 = ( 𝑆 ‘ 𝐶 ) ) |
16 |
|
opphllem1.x |
⊢ ( 𝜑 → 𝐴 ≠ 𝑅 ) |
17 |
|
opphllem1.y |
⊢ ( 𝜑 → 𝐵 ≠ 𝑅 ) |
18 |
|
opphllem1.z |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) |
19 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
21 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝐷 ) |
22 |
20 21
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐷 ) |
23 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
24 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
25 |
1 5 3 7 6 12
|
tglnpt |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ∈ 𝑃 ) |
27 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
28 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ≠ 𝑅 ) |
29 |
28
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ≠ 𝐵 ) |
30 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) |
31 |
1 3 5 23 26 24 27 29 30
|
btwnlng3 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑅 𝐿 𝐵 ) ) |
32 |
1 3 5 23 24 26 27 28 31
|
lncom |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐿 𝑅 ) ) |
33 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
34 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝐷 ) |
35 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ∈ 𝐷 ) |
36 |
1 3 5 23 24 26 28 28 33 34 35
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐷 = ( 𝐵 𝐿 𝑅 ) ) |
37 |
32 36
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝐷 ) |
38 |
22 37
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
39 |
19 38
|
mtand |
⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐷 ) |
40 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐷 ) |
41 |
1 5 3 7 6 14
|
tglnpt |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
42 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
43 |
1 2 3 5 42 7 41 8 9
|
mirbtwn |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 ) ) |
44 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = 𝐴 ) |
45 |
1 2 3 5 42 7 41 8 11 44
|
mircom |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = 𝐶 ) |
46 |
45
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 ) = ( 𝐶 𝐼 𝐴 ) ) |
47 |
43 46
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐶 𝐼 𝐴 ) ) |
48 |
1 2 3 7 25 11 9 10 41 18 47
|
axtgpasch |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝑃 ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) |
49 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝐺 ∈ TarskiG ) |
50 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑅 ∈ 𝑃 ) |
51 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ 𝑃 ) |
52 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) |
53 |
52
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) |
54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑀 = 𝑅 ) |
55 |
54
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → ( 𝑀 𝐼 𝑅 ) = ( 𝑅 𝐼 𝑅 ) ) |
56 |
53 55
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ ( 𝑅 𝐼 𝑅 ) ) |
57 |
1 2 3 49 50 51 56
|
axtgbtwnid |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑅 = 𝑡 ) |
58 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑅 ∈ 𝐷 ) |
59 |
57 58
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ 𝐷 ) |
60 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝐺 ∈ TarskiG ) |
61 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ∈ 𝑃 ) |
62 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑅 ∈ 𝑃 ) |
63 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ 𝑃 ) |
64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ≠ 𝑅 ) |
65 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) |
66 |
65
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) |
67 |
1 3 5 60 61 62 63 64 66
|
btwnlng1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ ( 𝑀 𝐿 𝑅 ) ) |
68 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝐺 ∈ TarskiG ) |
69 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ∈ 𝑃 ) |
70 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑅 ∈ 𝑃 ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ≠ 𝑅 ) |
72 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝐷 ∈ ran 𝐿 ) |
73 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ∈ 𝐷 ) |
74 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑅 ∈ 𝐷 ) |
75 |
1 3 5 68 69 70 71 71 72 73 74
|
tglinethru |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝐷 = ( 𝑀 𝐿 𝑅 ) ) |
76 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝐷 = ( 𝑀 𝐿 𝑅 ) ) |
77 |
67 76
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ 𝐷 ) |
78 |
59 77
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) → 𝑡 ∈ 𝐷 ) |
79 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) → 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) |
80 |
48 78 79
|
reximssdv |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) |
81 |
39 40 80
|
jca31 |
⊢ ( 𝜑 → ( ( ¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
82 |
1 2 3 4 10 11
|
islnopp |
⊢ ( 𝜑 → ( 𝐵 𝑂 𝐶 ↔ ( ( ¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) |
83 |
81 82
|
mpbird |
⊢ ( 𝜑 → 𝐵 𝑂 𝐶 ) |