| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
opphllem1.s |
⊢ 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) |
| 9 |
|
opphllem1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 10 |
|
opphllem1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 11 |
|
opphllem1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 12 |
|
opphllem1.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐷 ) |
| 13 |
|
opphllem1.o |
⊢ ( 𝜑 → 𝐴 𝑂 𝐶 ) |
| 14 |
|
opphllem1.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐷 ) |
| 15 |
|
opphllem1.n |
⊢ ( 𝜑 → 𝐴 = ( 𝑆 ‘ 𝐶 ) ) |
| 16 |
|
opphllem1.x |
⊢ ( 𝜑 → 𝐴 ≠ 𝑅 ) |
| 17 |
|
opphllem1.y |
⊢ ( 𝜑 → 𝐵 ≠ 𝑅 ) |
| 18 |
|
opphllem1.z |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 19 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 21 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝐷 ) |
| 22 |
20 21
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐷 ) |
| 23 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 24 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 25 |
1 5 3 7 6 12
|
tglnpt |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ∈ 𝑃 ) |
| 27 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 28 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ≠ 𝑅 ) |
| 29 |
28
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ≠ 𝐵 ) |
| 30 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 31 |
1 3 5 23 26 24 27 29 30
|
btwnlng3 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑅 𝐿 𝐵 ) ) |
| 32 |
1 3 5 23 24 26 27 28 31
|
lncom |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐿 𝑅 ) ) |
| 33 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
| 34 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝐷 ) |
| 35 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ∈ 𝐷 ) |
| 36 |
1 3 5 23 24 26 28 28 33 34 35
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐷 = ( 𝐵 𝐿 𝑅 ) ) |
| 37 |
32 36
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝐷 ) |
| 38 |
22 37
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
| 39 |
19 38
|
mtand |
⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐷 ) |
| 40 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐷 ) |
| 41 |
1 5 3 7 6 14
|
tglnpt |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
| 42 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 43 |
1 2 3 5 42 7 41 8 9
|
mirbtwn |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 ) ) |
| 44 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = 𝐴 ) |
| 45 |
1 2 3 5 42 7 41 8 11 44
|
mircom |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = 𝐶 ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 ) = ( 𝐶 𝐼 𝐴 ) ) |
| 47 |
43 46
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 48 |
1 2 3 7 25 11 9 10 41 18 47
|
axtgpasch |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝑃 ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) |
| 49 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝐺 ∈ TarskiG ) |
| 50 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑅 ∈ 𝑃 ) |
| 51 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ 𝑃 ) |
| 52 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) |
| 53 |
52
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑀 = 𝑅 ) |
| 55 |
54
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → ( 𝑀 𝐼 𝑅 ) = ( 𝑅 𝐼 𝑅 ) ) |
| 56 |
53 55
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ ( 𝑅 𝐼 𝑅 ) ) |
| 57 |
1 2 3 49 50 51 56
|
axtgbtwnid |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑅 = 𝑡 ) |
| 58 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑅 ∈ 𝐷 ) |
| 59 |
57 58
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 = 𝑅 ) → 𝑡 ∈ 𝐷 ) |
| 60 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝐺 ∈ TarskiG ) |
| 61 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ∈ 𝑃 ) |
| 62 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑅 ∈ 𝑃 ) |
| 63 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ 𝑃 ) |
| 64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ≠ 𝑅 ) |
| 65 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) |
| 66 |
65
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) |
| 67 |
1 3 5 60 61 62 63 64 66
|
btwnlng1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ ( 𝑀 𝐿 𝑅 ) ) |
| 68 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝐺 ∈ TarskiG ) |
| 69 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ∈ 𝑃 ) |
| 70 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑅 ∈ 𝑃 ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ≠ 𝑅 ) |
| 72 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝐷 ∈ ran 𝐿 ) |
| 73 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑀 ∈ 𝐷 ) |
| 74 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝑅 ∈ 𝐷 ) |
| 75 |
1 3 5 68 69 70 71 71 72 73 74
|
tglinethru |
⊢ ( ( 𝜑 ∧ 𝑀 ≠ 𝑅 ) → 𝐷 = ( 𝑀 𝐿 𝑅 ) ) |
| 76 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝐷 = ( 𝑀 𝐿 𝑅 ) ) |
| 77 |
67 76
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) ∧ 𝑀 ≠ 𝑅 ) → 𝑡 ∈ 𝐷 ) |
| 78 |
59 77
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) → 𝑡 ∈ 𝐷 ) |
| 79 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑃 ∧ ( 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ∧ 𝑡 ∈ ( 𝑀 𝐼 𝑅 ) ) ) ) → 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 80 |
48 78 79
|
reximssdv |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 81 |
39 40 80
|
jca31 |
⊢ ( 𝜑 → ( ( ¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
| 82 |
1 2 3 4 10 11
|
islnopp |
⊢ ( 𝜑 → ( 𝐵 𝑂 𝐶 ↔ ( ( ¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) |
| 83 |
81 82
|
mpbird |
⊢ ( 𝜑 → 𝐵 𝑂 𝐶 ) |