| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
opphllem1.s |
⊢ 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) |
| 9 |
|
opphllem1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 10 |
|
opphllem1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 11 |
|
opphllem1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 12 |
|
opphllem1.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐷 ) |
| 13 |
|
opphllem1.o |
⊢ ( 𝜑 → 𝐴 𝑂 𝐶 ) |
| 14 |
|
opphllem1.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐷 ) |
| 15 |
|
opphllem1.n |
⊢ ( 𝜑 → 𝐴 = ( 𝑆 ‘ 𝐶 ) ) |
| 16 |
|
opphllem1.x |
⊢ ( 𝜑 → 𝐴 ≠ 𝑅 ) |
| 17 |
|
opphllem1.y |
⊢ ( 𝜑 → 𝐵 ≠ 𝑅 ) |
| 18 |
|
opphllem2.z |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐷 ∈ ran 𝐿 ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 21 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 22 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 23 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 24 |
1 5 3 7 6 14
|
tglnpt |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝑀 ∈ 𝑃 ) |
| 26 |
1 2 3 5 23 20 25 8 22
|
mircl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) ∈ 𝑃 ) |
| 27 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝑀 ∈ 𝐷 ) |
| 28 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝑅 ∈ 𝐷 ) |
| 29 |
1 2 3 5 23 20 8 19 27 28
|
mirln |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝑅 ) ∈ 𝐷 ) |
| 30 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 31 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝐷 ) |
| 32 |
30 31
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐷 ) |
| 33 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 34 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 35 |
1 5 3 7 6 12
|
tglnpt |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
| 36 |
35
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ∈ 𝑃 ) |
| 37 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 38 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ≠ 𝑅 ) |
| 39 |
38
|
necomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ≠ 𝐵 ) |
| 40 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 41 |
1 3 5 33 36 34 37 39 40
|
btwnlng1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑅 𝐿 𝐵 ) ) |
| 42 |
1 3 5 33 34 36 37 38 41
|
lncom |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐿 𝑅 ) ) |
| 43 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
| 44 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝐷 ) |
| 45 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑅 ∈ 𝐷 ) |
| 46 |
1 3 5 33 34 36 38 38 43 44 45
|
tglinethru |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐷 = ( 𝐵 𝐿 𝑅 ) ) |
| 47 |
42 46
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝐷 ) |
| 48 |
32 47
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
| 49 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ 𝐵 ∈ 𝐷 ) → ¬ 𝐴 ∈ 𝐷 ) |
| 51 |
48 50
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ¬ 𝐵 ∈ 𝐷 ) |
| 52 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 53 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → 𝑀 ∈ 𝑃 ) |
| 54 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → 𝐵 ∈ 𝑃 ) |
| 55 |
1 2 3 5 23 52 53 8 54
|
mirmir |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → ( 𝑆 ‘ ( 𝑆 ‘ 𝐵 ) ) = 𝐵 ) |
| 56 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 57 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → 𝑀 ∈ 𝐷 ) |
| 58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) |
| 59 |
1 2 3 5 23 52 8 56 57 58
|
mirln |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → ( 𝑆 ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ 𝐷 ) |
| 60 |
55 59
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → 𝐵 ∈ 𝐷 ) |
| 61 |
51 60
|
mtand |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ¬ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) |
| 62 |
1 2 3 5 23 20 25 8 22
|
mirbtwn |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝑀 ∈ ( ( 𝑆 ‘ 𝐵 ) 𝐼 𝐵 ) ) |
| 63 |
1 2 3 4 26 22 27 61 51 62
|
islnoppd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) 𝑂 𝐵 ) |
| 64 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) ) |
| 65 |
|
nelne2 |
⊢ ( ( ( 𝑆 ‘ 𝑅 ) ∈ 𝐷 ∧ ¬ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) → ( 𝑆 ‘ 𝑅 ) ≠ ( 𝑆 ‘ 𝐵 ) ) |
| 66 |
29 61 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝑅 ) ≠ ( 𝑆 ‘ 𝐵 ) ) |
| 67 |
66
|
necomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) ≠ ( 𝑆 ‘ 𝑅 ) ) |
| 68 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐷 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ¬ 𝐶 ∈ 𝐷 ) |
| 70 |
|
nelne2 |
⊢ ( ( ( 𝑆 ‘ 𝑅 ) ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑅 ) ≠ 𝐶 ) |
| 71 |
29 69 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝑅 ) ≠ 𝐶 ) |
| 72 |
71
|
necomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐶 ≠ ( 𝑆 ‘ 𝑅 ) ) |
| 73 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = 𝐴 ) |
| 74 |
1 2 3 5 23 7 24 8 11 73
|
mircom |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = 𝐶 ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) = 𝐶 ) |
| 76 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝑅 ∈ 𝑃 ) |
| 77 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 79 |
1 2 3 5 23 20 25 8 76 77 22 78
|
mirbtwni |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ( ( 𝑆 ‘ 𝑅 ) 𝐼 ( 𝑆 ‘ 𝐵 ) ) ) |
| 80 |
75 79
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐶 ∈ ( ( 𝑆 ‘ 𝑅 ) 𝐼 ( 𝑆 ‘ 𝐵 ) ) ) |
| 81 |
1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80
|
opphllem1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐶 𝑂 𝐵 ) |
| 82 |
1 2 3 4 5 19 20 21 22 81
|
oppcom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑅 𝐼 𝐵 ) ) → 𝐵 𝑂 𝐶 ) |
| 83 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐷 ∈ ran 𝐿 ) |
| 84 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 85 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 86 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
| 87 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
| 88 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝑅 ∈ 𝐷 ) |
| 89 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐴 𝑂 𝐶 ) |
| 90 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝑀 ∈ 𝐷 ) |
| 91 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐴 = ( 𝑆 ‘ 𝐶 ) ) |
| 92 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐴 ≠ 𝑅 ) |
| 93 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐵 ≠ 𝑅 ) |
| 94 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 95 |
1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94
|
opphllem1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝑅 𝐼 𝐴 ) ) → 𝐵 𝑂 𝐶 ) |
| 96 |
82 95 18
|
mpjaodan |
⊢ ( 𝜑 → 𝐵 𝑂 𝐶 ) |