Metamath Proof Explorer


Theorem opphllem4

Description: Lemma for opphl . (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses hpg.p 𝑃 = ( Base ‘ 𝐺 )
hpg.d = ( dist ‘ 𝐺 )
hpg.i 𝐼 = ( Itv ‘ 𝐺 )
hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
opphl.l 𝐿 = ( LineG ‘ 𝐺 )
opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
opphl.g ( 𝜑𝐺 ∈ TarskiG )
opphl.k 𝐾 = ( hlG ‘ 𝐺 )
opphllem5.n 𝑁 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 )
opphllem5.a ( 𝜑𝐴𝑃 )
opphllem5.c ( 𝜑𝐶𝑃 )
opphllem5.r ( 𝜑𝑅𝐷 )
opphllem5.s ( 𝜑𝑆𝐷 )
opphllem5.m ( 𝜑𝑀𝑃 )
opphllem5.o ( 𝜑𝐴 𝑂 𝐶 )
opphllem5.p ( 𝜑𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑅 ) )
opphllem5.q ( 𝜑𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝑆 ) )
opphllem3.t ( 𝜑𝑅𝑆 )
opphllem3.l ( 𝜑 → ( 𝑆 𝐶 ) ( ≤G ‘ 𝐺 ) ( 𝑅 𝐴 ) )
opphllem3.u ( 𝜑𝑈𝑃 )
opphllem3.v ( 𝜑 → ( 𝑁𝑅 ) = 𝑆 )
opphllem4.u ( 𝜑𝑉𝑃 )
opphllem4.1 ( 𝜑𝑈 ( 𝐾𝑅 ) 𝐴 )
opphllem4.2 ( 𝜑𝑉 ( 𝐾𝑆 ) 𝐶 )
Assertion opphllem4 ( 𝜑𝑈 𝑂 𝑉 )

Proof

Step Hyp Ref Expression
1 hpg.p 𝑃 = ( Base ‘ 𝐺 )
2 hpg.d = ( dist ‘ 𝐺 )
3 hpg.i 𝐼 = ( Itv ‘ 𝐺 )
4 hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
5 opphl.l 𝐿 = ( LineG ‘ 𝐺 )
6 opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
7 opphl.g ( 𝜑𝐺 ∈ TarskiG )
8 opphl.k 𝐾 = ( hlG ‘ 𝐺 )
9 opphllem5.n 𝑁 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 )
10 opphllem5.a ( 𝜑𝐴𝑃 )
11 opphllem5.c ( 𝜑𝐶𝑃 )
12 opphllem5.r ( 𝜑𝑅𝐷 )
13 opphllem5.s ( 𝜑𝑆𝐷 )
14 opphllem5.m ( 𝜑𝑀𝑃 )
15 opphllem5.o ( 𝜑𝐴 𝑂 𝐶 )
16 opphllem5.p ( 𝜑𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑅 ) )
17 opphllem5.q ( 𝜑𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝑆 ) )
18 opphllem3.t ( 𝜑𝑅𝑆 )
19 opphllem3.l ( 𝜑 → ( 𝑆 𝐶 ) ( ≤G ‘ 𝐺 ) ( 𝑅 𝐴 ) )
20 opphllem3.u ( 𝜑𝑈𝑃 )
21 opphllem3.v ( 𝜑 → ( 𝑁𝑅 ) = 𝑆 )
22 opphllem4.u ( 𝜑𝑉𝑃 )
23 opphllem4.1 ( 𝜑𝑈 ( 𝐾𝑅 ) 𝐴 )
24 opphllem4.2 ( 𝜑𝑉 ( 𝐾𝑆 ) 𝐶 )
25 eqid ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 )
26 1 2 3 5 25 7 14 9 20 mircl ( 𝜑 → ( 𝑁𝑈 ) ∈ 𝑃 )
27 1 5 3 7 6 13 tglnpt ( 𝜑𝑆𝑃 )
28 1 5 3 7 6 12 tglnpt ( 𝜑𝑅𝑃 )
29 18 necomd ( 𝜑𝑆𝑅 )
30 1 2 3 5 25 7 14 9 28 mirbtwn ( 𝜑𝑀 ∈ ( ( 𝑁𝑅 ) 𝐼 𝑅 ) )
31 21 oveq1d ( 𝜑 → ( ( 𝑁𝑅 ) 𝐼 𝑅 ) = ( 𝑆 𝐼 𝑅 ) )
32 30 31 eleqtrd ( 𝜑𝑀 ∈ ( 𝑆 𝐼 𝑅 ) )
33 1 3 5 7 27 28 14 29 32 btwnlng1 ( 𝜑𝑀 ∈ ( 𝑆 𝐿 𝑅 ) )
34 1 3 5 7 27 28 29 29 6 13 12 tglinethru ( 𝜑𝐷 = ( 𝑆 𝐿 𝑅 ) )
35 33 34 eleqtrrd ( 𝜑𝑀𝐷 )
36 1 2 3 4 5 6 7 10 11 15 oppne1 ( 𝜑 → ¬ 𝐴𝐷 )
37 1 3 8 20 10 28 7 23 hlne1 ( 𝜑𝑈𝑅 )
38 37 necomd ( 𝜑𝑅𝑈 )
39 1 3 8 20 10 28 7 5 23 hlln ( 𝜑𝑈 ∈ ( 𝐴 𝐿 𝑅 ) )
40 1 3 8 20 10 28 7 23 hlne2 ( 𝜑𝐴𝑅 )
41 1 3 5 7 28 20 10 38 39 40 lnrot1 ( 𝜑𝐴 ∈ ( 𝑅 𝐿 𝑈 ) )
42 41 adantr ( ( 𝜑𝑈𝐷 ) → 𝐴 ∈ ( 𝑅 𝐿 𝑈 ) )
43 7 adantr ( ( 𝜑𝑈𝐷 ) → 𝐺 ∈ TarskiG )
44 28 adantr ( ( 𝜑𝑈𝐷 ) → 𝑅𝑃 )
45 20 adantr ( ( 𝜑𝑈𝐷 ) → 𝑈𝑃 )
46 38 adantr ( ( 𝜑𝑈𝐷 ) → 𝑅𝑈 )
47 6 adantr ( ( 𝜑𝑈𝐷 ) → 𝐷 ∈ ran 𝐿 )
48 12 adantr ( ( 𝜑𝑈𝐷 ) → 𝑅𝐷 )
49 simpr ( ( 𝜑𝑈𝐷 ) → 𝑈𝐷 )
50 1 3 5 43 44 45 46 46 47 48 49 tglinethru ( ( 𝜑𝑈𝐷 ) → 𝐷 = ( 𝑅 𝐿 𝑈 ) )
51 42 50 eleqtrrd ( ( 𝜑𝑈𝐷 ) → 𝐴𝐷 )
52 36 51 mtand ( 𝜑 → ¬ 𝑈𝐷 )
53 7 adantr ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → 𝐺 ∈ TarskiG )
54 14 adantr ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → 𝑀𝑃 )
55 20 adantr ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → 𝑈𝑃 )
56 1 2 3 5 25 53 54 9 55 mirmir ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ ( 𝑁𝑈 ) ) = 𝑈 )
57 6 adantr ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 )
58 35 adantr ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → 𝑀𝐷 )
59 simpr ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → ( 𝑁𝑈 ) ∈ 𝐷 )
60 1 2 3 5 25 53 9 57 58 59 mirln ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ ( 𝑁𝑈 ) ) ∈ 𝐷 )
61 56 60 eqeltrrd ( ( 𝜑 ∧ ( 𝑁𝑈 ) ∈ 𝐷 ) → 𝑈𝐷 )
62 52 61 mtand ( 𝜑 → ¬ ( 𝑁𝑈 ) ∈ 𝐷 )
63 1 2 3 5 25 7 14 9 20 mirbtwn ( 𝜑𝑀 ∈ ( ( 𝑁𝑈 ) 𝐼 𝑈 ) )
64 1 2 3 4 26 20 35 62 52 63 islnoppd ( 𝜑 → ( 𝑁𝑈 ) 𝑂 𝑈 )
65 eqidd ( 𝜑 → ( 𝑁𝑈 ) = ( 𝑁𝑈 ) )
66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 opphllem3 ( 𝜑 → ( 𝑈 ( 𝐾𝑅 ) 𝐴 ↔ ( 𝑁𝑈 ) ( 𝐾𝑆 ) 𝐶 ) )
67 23 66 mpbid ( 𝜑 → ( 𝑁𝑈 ) ( 𝐾𝑆 ) 𝐶 )
68 1 3 8 22 11 27 7 24 hlcomd ( 𝜑𝐶 ( 𝐾𝑆 ) 𝑉 )
69 1 3 8 26 11 22 7 27 67 68 hltr ( 𝜑 → ( 𝑁𝑈 ) ( 𝐾𝑆 ) 𝑉 )
70 1 3 8 26 22 27 7 ishlg ( 𝜑 → ( ( 𝑁𝑈 ) ( 𝐾𝑆 ) 𝑉 ↔ ( ( 𝑁𝑈 ) ≠ 𝑆𝑉𝑆 ∧ ( ( 𝑁𝑈 ) ∈ ( 𝑆 𝐼 𝑉 ) ∨ 𝑉 ∈ ( 𝑆 𝐼 ( 𝑁𝑈 ) ) ) ) ) )
71 69 70 mpbid ( 𝜑 → ( ( 𝑁𝑈 ) ≠ 𝑆𝑉𝑆 ∧ ( ( 𝑁𝑈 ) ∈ ( 𝑆 𝐼 𝑉 ) ∨ 𝑉 ∈ ( 𝑆 𝐼 ( 𝑁𝑈 ) ) ) ) )
72 71 simp1d ( 𝜑 → ( 𝑁𝑈 ) ≠ 𝑆 )
73 1 3 8 11 22 27 7 68 hlne2 ( 𝜑𝑉𝑆 )
74 71 simp3d ( 𝜑 → ( ( 𝑁𝑈 ) ∈ ( 𝑆 𝐼 𝑉 ) ∨ 𝑉 ∈ ( 𝑆 𝐼 ( 𝑁𝑈 ) ) ) )
75 1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74 opphllem2 ( 𝜑𝑉 𝑂 𝑈 )
76 1 2 3 4 5 6 7 22 20 75 oppcom ( 𝜑𝑈 𝑂 𝑉 )