| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
opphl.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
| 9 |
|
opphllem5.n |
⊢ 𝑁 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) |
| 10 |
|
opphllem5.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 11 |
|
opphllem5.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 12 |
|
opphllem5.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐷 ) |
| 13 |
|
opphllem5.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝐷 ) |
| 14 |
|
opphllem5.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
| 15 |
|
opphllem5.o |
⊢ ( 𝜑 → 𝐴 𝑂 𝐶 ) |
| 16 |
|
opphllem5.p |
⊢ ( 𝜑 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑅 ) ) |
| 17 |
|
opphllem5.q |
⊢ ( 𝜑 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝑆 ) ) |
| 18 |
|
opphllem3.t |
⊢ ( 𝜑 → 𝑅 ≠ 𝑆 ) |
| 19 |
|
opphllem3.l |
⊢ ( 𝜑 → ( 𝑆 − 𝐶 ) ( ≤G ‘ 𝐺 ) ( 𝑅 − 𝐴 ) ) |
| 20 |
|
opphllem3.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑃 ) |
| 21 |
|
opphllem3.v |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑅 ) = 𝑆 ) |
| 22 |
|
opphllem4.u |
⊢ ( 𝜑 → 𝑉 ∈ 𝑃 ) |
| 23 |
|
opphllem4.1 |
⊢ ( 𝜑 → 𝑈 ( 𝐾 ‘ 𝑅 ) 𝐴 ) |
| 24 |
|
opphllem4.2 |
⊢ ( 𝜑 → 𝑉 ( 𝐾 ‘ 𝑆 ) 𝐶 ) |
| 25 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 26 |
1 2 3 5 25 7 14 9 20
|
mircl |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ∈ 𝑃 ) |
| 27 |
1 5 3 7 6 13
|
tglnpt |
⊢ ( 𝜑 → 𝑆 ∈ 𝑃 ) |
| 28 |
1 5 3 7 6 12
|
tglnpt |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
| 29 |
18
|
necomd |
⊢ ( 𝜑 → 𝑆 ≠ 𝑅 ) |
| 30 |
1 2 3 5 25 7 14 9 28
|
mirbtwn |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝑁 ‘ 𝑅 ) 𝐼 𝑅 ) ) |
| 31 |
21
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑅 ) 𝐼 𝑅 ) = ( 𝑆 𝐼 𝑅 ) ) |
| 32 |
30 31
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑆 𝐼 𝑅 ) ) |
| 33 |
1 3 5 7 27 28 14 29 32
|
btwnlng1 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑆 𝐿 𝑅 ) ) |
| 34 |
1 3 5 7 27 28 29 29 6 13 12
|
tglinethru |
⊢ ( 𝜑 → 𝐷 = ( 𝑆 𝐿 𝑅 ) ) |
| 35 |
33 34
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ 𝐷 ) |
| 36 |
1 2 3 4 5 6 7 10 11 15
|
oppne1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
| 37 |
1 3 8 20 10 28 7 23
|
hlne1 |
⊢ ( 𝜑 → 𝑈 ≠ 𝑅 ) |
| 38 |
37
|
necomd |
⊢ ( 𝜑 → 𝑅 ≠ 𝑈 ) |
| 39 |
1 3 8 20 10 28 7 5 23
|
hlln |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 𝐿 𝑅 ) ) |
| 40 |
1 3 8 20 10 28 7 23
|
hlne2 |
⊢ ( 𝜑 → 𝐴 ≠ 𝑅 ) |
| 41 |
1 3 5 7 28 20 10 38 39 40
|
lnrot1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅 𝐿 𝑈 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐴 ∈ ( 𝑅 𝐿 𝑈 ) ) |
| 43 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 44 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑅 ∈ 𝑃 ) |
| 45 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑈 ∈ 𝑃 ) |
| 46 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑅 ≠ 𝑈 ) |
| 47 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 48 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑅 ∈ 𝐷 ) |
| 49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑈 ∈ 𝐷 ) |
| 50 |
1 3 5 43 44 45 46 46 47 48 49
|
tglinethru |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐷 = ( 𝑅 𝐿 𝑈 ) ) |
| 51 |
42 50
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
| 52 |
36 51
|
mtand |
⊢ ( 𝜑 → ¬ 𝑈 ∈ 𝐷 ) |
| 53 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 54 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑀 ∈ 𝑃 ) |
| 55 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑈 ∈ 𝑃 ) |
| 56 |
1 2 3 5 25 53 54 9 55
|
mirmir |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑈 ) ) = 𝑈 ) |
| 57 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 58 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑀 ∈ 𝐷 ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) |
| 60 |
1 2 3 5 25 53 9 57 58 59
|
mirln |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑈 ) ) ∈ 𝐷 ) |
| 61 |
56 60
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑈 ∈ 𝐷 ) |
| 62 |
52 61
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) |
| 63 |
1 2 3 5 25 7 14 9 20
|
mirbtwn |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝑁 ‘ 𝑈 ) 𝐼 𝑈 ) ) |
| 64 |
1 2 3 4 26 20 35 62 52 63
|
islnoppd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) 𝑂 𝑈 ) |
| 65 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) = ( 𝑁 ‘ 𝑈 ) ) |
| 66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
opphllem3 |
⊢ ( 𝜑 → ( 𝑈 ( 𝐾 ‘ 𝑅 ) 𝐴 ↔ ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝐶 ) ) |
| 67 |
23 66
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝐶 ) |
| 68 |
1 3 8 22 11 27 7 24
|
hlcomd |
⊢ ( 𝜑 → 𝐶 ( 𝐾 ‘ 𝑆 ) 𝑉 ) |
| 69 |
1 3 8 26 11 22 7 27 67 68
|
hltr |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝑉 ) |
| 70 |
1 3 8 26 22 27 7
|
ishlg |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝑉 ↔ ( ( 𝑁 ‘ 𝑈 ) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ( ( 𝑁 ‘ 𝑈 ) ∈ ( 𝑆 𝐼 𝑉 ) ∨ 𝑉 ∈ ( 𝑆 𝐼 ( 𝑁 ‘ 𝑈 ) ) ) ) ) ) |
| 71 |
69 70
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ( ( 𝑁 ‘ 𝑈 ) ∈ ( 𝑆 𝐼 𝑉 ) ∨ 𝑉 ∈ ( 𝑆 𝐼 ( 𝑁 ‘ 𝑈 ) ) ) ) ) |
| 72 |
71
|
simp1d |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ≠ 𝑆 ) |
| 73 |
1 3 8 11 22 27 7 68
|
hlne2 |
⊢ ( 𝜑 → 𝑉 ≠ 𝑆 ) |
| 74 |
71
|
simp3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ∈ ( 𝑆 𝐼 𝑉 ) ∨ 𝑉 ∈ ( 𝑆 𝐼 ( 𝑁 ‘ 𝑈 ) ) ) ) |
| 75 |
1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74
|
opphllem2 |
⊢ ( 𝜑 → 𝑉 𝑂 𝑈 ) |
| 76 |
1 2 3 4 5 6 7 22 20 75
|
oppcom |
⊢ ( 𝜑 → 𝑈 𝑂 𝑉 ) |