Metamath Proof Explorer


Theorem opphllem4

Description: Lemma for opphl . (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses hpg.p âŠĒ 𝑃 = ( Base ‘ 𝐚 )
hpg.d âŠĒ − = ( dist ‘ 𝐚 )
hpg.i âŠĒ 𝐞 = ( Itv ‘ 𝐚 )
hpg.o âŠĒ 𝑂 = { âŸĻ 𝑎 , 𝑏 âŸĐ âˆĢ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ ð‘Ą ∈ 𝐷 ð‘Ą ∈ ( 𝑎 𝐞 𝑏 ) ) }
opphl.l âŠĒ ðŋ = ( LineG ‘ 𝐚 )
opphl.d âŠĒ ( 𝜑 → 𝐷 ∈ ran ðŋ )
opphl.g âŠĒ ( 𝜑 → 𝐚 ∈ TarskiG )
opphl.k âŠĒ ðū = ( hlG ‘ 𝐚 )
opphllem5.n âŠĒ 𝑁 = ( ( pInvG ‘ 𝐚 ) ‘ 𝑀 )
opphllem5.a âŠĒ ( 𝜑 → ðī ∈ 𝑃 )
opphllem5.c âŠĒ ( 𝜑 → ðķ ∈ 𝑃 )
opphllem5.r âŠĒ ( 𝜑 → 𝑅 ∈ 𝐷 )
opphllem5.s âŠĒ ( 𝜑 → 𝑆 ∈ 𝐷 )
opphllem5.m âŠĒ ( 𝜑 → 𝑀 ∈ 𝑃 )
opphllem5.o âŠĒ ( 𝜑 → ðī 𝑂 ðķ )
opphllem5.p âŠĒ ( 𝜑 → 𝐷 ( ⟂G ‘ 𝐚 ) ( ðī ðŋ 𝑅 ) )
opphllem5.q âŠĒ ( 𝜑 → 𝐷 ( ⟂G ‘ 𝐚 ) ( ðķ ðŋ 𝑆 ) )
opphllem3.t âŠĒ ( 𝜑 → 𝑅 ≠ 𝑆 )
opphllem3.l âŠĒ ( 𝜑 → ( 𝑆 − ðķ ) ( â‰ĪG ‘ 𝐚 ) ( 𝑅 − ðī ) )
opphllem3.u âŠĒ ( 𝜑 → 𝑈 ∈ 𝑃 )
opphllem3.v âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑅 ) = 𝑆 )
opphllem4.u âŠĒ ( 𝜑 → 𝑉 ∈ 𝑃 )
opphllem4.1 âŠĒ ( 𝜑 → 𝑈 ( ðū ‘ 𝑅 ) ðī )
opphllem4.2 âŠĒ ( 𝜑 → 𝑉 ( ðū ‘ 𝑆 ) ðķ )
Assertion opphllem4 ( 𝜑 → 𝑈 𝑂 𝑉 )

Proof

Step Hyp Ref Expression
1 hpg.p âŠĒ 𝑃 = ( Base ‘ 𝐚 )
2 hpg.d âŠĒ − = ( dist ‘ 𝐚 )
3 hpg.i âŠĒ 𝐞 = ( Itv ‘ 𝐚 )
4 hpg.o âŠĒ 𝑂 = { âŸĻ 𝑎 , 𝑏 âŸĐ âˆĢ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ ð‘Ą ∈ 𝐷 ð‘Ą ∈ ( 𝑎 𝐞 𝑏 ) ) }
5 opphl.l âŠĒ ðŋ = ( LineG ‘ 𝐚 )
6 opphl.d âŠĒ ( 𝜑 → 𝐷 ∈ ran ðŋ )
7 opphl.g âŠĒ ( 𝜑 → 𝐚 ∈ TarskiG )
8 opphl.k âŠĒ ðū = ( hlG ‘ 𝐚 )
9 opphllem5.n âŠĒ 𝑁 = ( ( pInvG ‘ 𝐚 ) ‘ 𝑀 )
10 opphllem5.a âŠĒ ( 𝜑 → ðī ∈ 𝑃 )
11 opphllem5.c âŠĒ ( 𝜑 → ðķ ∈ 𝑃 )
12 opphllem5.r âŠĒ ( 𝜑 → 𝑅 ∈ 𝐷 )
13 opphllem5.s âŠĒ ( 𝜑 → 𝑆 ∈ 𝐷 )
14 opphllem5.m âŠĒ ( 𝜑 → 𝑀 ∈ 𝑃 )
15 opphllem5.o âŠĒ ( 𝜑 → ðī 𝑂 ðķ )
16 opphllem5.p âŠĒ ( 𝜑 → 𝐷 ( ⟂G ‘ 𝐚 ) ( ðī ðŋ 𝑅 ) )
17 opphllem5.q âŠĒ ( 𝜑 → 𝐷 ( ⟂G ‘ 𝐚 ) ( ðķ ðŋ 𝑆 ) )
18 opphllem3.t âŠĒ ( 𝜑 → 𝑅 ≠ 𝑆 )
19 opphllem3.l âŠĒ ( 𝜑 → ( 𝑆 − ðķ ) ( â‰ĪG ‘ 𝐚 ) ( 𝑅 − ðī ) )
20 opphllem3.u âŠĒ ( 𝜑 → 𝑈 ∈ 𝑃 )
21 opphllem3.v âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑅 ) = 𝑆 )
22 opphllem4.u âŠĒ ( 𝜑 → 𝑉 ∈ 𝑃 )
23 opphllem4.1 âŠĒ ( 𝜑 → 𝑈 ( ðū ‘ 𝑅 ) ðī )
24 opphllem4.2 âŠĒ ( 𝜑 → 𝑉 ( ðū ‘ 𝑆 ) ðķ )
25 eqid âŠĒ ( pInvG ‘ 𝐚 ) = ( pInvG ‘ 𝐚 )
26 1 2 3 5 25 7 14 9 20 mircl âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ∈ 𝑃 )
27 1 5 3 7 6 13 tglnpt âŠĒ ( 𝜑 → 𝑆 ∈ 𝑃 )
28 1 5 3 7 6 12 tglnpt âŠĒ ( 𝜑 → 𝑅 ∈ 𝑃 )
29 18 necomd âŠĒ ( 𝜑 → 𝑆 ≠ 𝑅 )
30 1 2 3 5 25 7 14 9 28 mirbtwn âŠĒ ( 𝜑 → 𝑀 ∈ ( ( 𝑁 ‘ 𝑅 ) 𝐞 𝑅 ) )
31 21 oveq1d âŠĒ ( 𝜑 → ( ( 𝑁 ‘ 𝑅 ) 𝐞 𝑅 ) = ( 𝑆 𝐞 𝑅 ) )
32 30 31 eleqtrd âŠĒ ( 𝜑 → 𝑀 ∈ ( 𝑆 𝐞 𝑅 ) )
33 1 3 5 7 27 28 14 29 32 btwnlng1 âŠĒ ( 𝜑 → 𝑀 ∈ ( 𝑆 ðŋ 𝑅 ) )
34 1 3 5 7 27 28 29 29 6 13 12 tglinethru âŠĒ ( 𝜑 → 𝐷 = ( 𝑆 ðŋ 𝑅 ) )
35 33 34 eleqtrrd âŠĒ ( 𝜑 → 𝑀 ∈ 𝐷 )
36 1 2 3 4 5 6 7 10 11 15 oppne1 âŠĒ ( 𝜑 → ÂŽ ðī ∈ 𝐷 )
37 1 3 8 20 10 28 7 23 hlne1 âŠĒ ( 𝜑 → 𝑈 ≠ 𝑅 )
38 37 necomd âŠĒ ( 𝜑 → 𝑅 ≠ 𝑈 )
39 1 3 8 20 10 28 7 5 23 hlln âŠĒ ( 𝜑 → 𝑈 ∈ ( ðī ðŋ 𝑅 ) )
40 1 3 8 20 10 28 7 23 hlne2 âŠĒ ( 𝜑 → ðī ≠ 𝑅 )
41 1 3 5 7 28 20 10 38 39 40 lnrot1 âŠĒ ( 𝜑 → ðī ∈ ( 𝑅 ðŋ 𝑈 ) )
42 41 adantr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → ðī ∈ ( 𝑅 ðŋ 𝑈 ) )
43 7 adantr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐚 ∈ TarskiG )
44 28 adantr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑅 ∈ 𝑃 )
45 20 adantr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑈 ∈ 𝑃 )
46 38 adantr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑅 ≠ 𝑈 )
47 6 adantr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐷 ∈ ran ðŋ )
48 12 adantr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑅 ∈ 𝐷 )
49 simpr âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝑈 ∈ 𝐷 )
50 1 3 5 43 44 45 46 46 47 48 49 tglinethru âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → 𝐷 = ( 𝑅 ðŋ 𝑈 ) )
51 42 50 eleqtrrd âŠĒ ( ( 𝜑 ∧ 𝑈 ∈ 𝐷 ) → ðī ∈ 𝐷 )
52 36 51 mtand âŠĒ ( 𝜑 → ÂŽ 𝑈 ∈ 𝐷 )
53 7 adantr âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝐚 ∈ TarskiG )
54 14 adantr âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑀 ∈ 𝑃 )
55 20 adantr âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑈 ∈ 𝑃 )
56 1 2 3 5 25 53 54 9 55 mirmir âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑈 ) ) = 𝑈 )
57 6 adantr âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝐷 ∈ ran ðŋ )
58 35 adantr âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑀 ∈ 𝐷 )
59 simpr âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 )
60 1 2 3 5 25 53 9 57 58 59 mirln âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑈 ) ) ∈ 𝐷 )
61 56 60 eqeltrrd âŠĒ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 ) → 𝑈 ∈ 𝐷 )
62 52 61 mtand âŠĒ ( 𝜑 → ÂŽ ( 𝑁 ‘ 𝑈 ) ∈ 𝐷 )
63 1 2 3 5 25 7 14 9 20 mirbtwn âŠĒ ( 𝜑 → 𝑀 ∈ ( ( 𝑁 ‘ 𝑈 ) 𝐞 𝑈 ) )
64 1 2 3 4 26 20 35 62 52 63 islnoppd âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) 𝑂 𝑈 )
65 eqidd âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) = ( 𝑁 ‘ 𝑈 ) )
66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 opphllem3 âŠĒ ( 𝜑 → ( 𝑈 ( ðū ‘ 𝑅 ) ðī ↔ ( 𝑁 ‘ 𝑈 ) ( ðū ‘ 𝑆 ) ðķ ) )
67 23 66 mpbid âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ( ðū ‘ 𝑆 ) ðķ )
68 1 3 8 22 11 27 7 24 hlcomd âŠĒ ( 𝜑 → ðķ ( ðū ‘ 𝑆 ) 𝑉 )
69 1 3 8 26 11 22 7 27 67 68 hltr âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ( ðū ‘ 𝑆 ) 𝑉 )
70 1 3 8 26 22 27 7 ishlg âŠĒ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ( ðū ‘ 𝑆 ) 𝑉 ↔ ( ( 𝑁 ‘ 𝑈 ) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ( ( 𝑁 ‘ 𝑈 ) ∈ ( 𝑆 𝐞 𝑉 ) âˆĻ 𝑉 ∈ ( 𝑆 𝐞 ( 𝑁 ‘ 𝑈 ) ) ) ) ) )
71 69 70 mpbid âŠĒ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ( ( 𝑁 ‘ 𝑈 ) ∈ ( 𝑆 𝐞 𝑉 ) âˆĻ 𝑉 ∈ ( 𝑆 𝐞 ( 𝑁 ‘ 𝑈 ) ) ) ) )
72 71 simp1d âŠĒ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ≠ 𝑆 )
73 1 3 8 11 22 27 7 68 hlne2 âŠĒ ( 𝜑 → 𝑉 ≠ 𝑆 )
74 71 simp3d âŠĒ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ∈ ( 𝑆 𝐞 𝑉 ) âˆĻ 𝑉 ∈ ( 𝑆 𝐞 ( 𝑁 ‘ 𝑈 ) ) ) )
75 1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74 opphllem2 âŠĒ ( 𝜑 → 𝑉 𝑂 𝑈 )
76 1 2 3 4 5 6 7 22 20 75 oppcom âŠĒ ( 𝜑 → 𝑈 𝑂 𝑉 )