Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hpg.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
hpg.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
hpg.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
hpg.o | ⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } | ||
opphl.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | ||
opphl.d | ⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) | ||
opphl.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
oppcom.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
oppcom.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
oppcom.o | ⊢ ( 𝜑 → 𝐴 𝑂 𝐵 ) | ||
Assertion | oppne2 | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | hpg.d | ⊢ − = ( dist ‘ 𝐺 ) | |
3 | hpg.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
4 | hpg.o | ⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } | |
5 | opphl.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | |
6 | opphl.d | ⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) | |
7 | opphl.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
8 | oppcom.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
9 | oppcom.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
10 | oppcom.o | ⊢ ( 𝜑 → 𝐴 𝑂 𝐵 ) | |
11 | 1 2 3 4 8 9 | islnopp | ⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
12 | 10 11 | mpbid | ⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
13 | 12 | simplrd | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐷 ) |