Metamath Proof Explorer


Theorem oppne3

Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020)

Ref Expression
Hypotheses hpg.p 𝑃 = ( Base ‘ 𝐺 )
hpg.d = ( dist ‘ 𝐺 )
hpg.i 𝐼 = ( Itv ‘ 𝐺 )
hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
opphl.l 𝐿 = ( LineG ‘ 𝐺 )
opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
opphl.g ( 𝜑𝐺 ∈ TarskiG )
oppcom.a ( 𝜑𝐴𝑃 )
oppcom.b ( 𝜑𝐵𝑃 )
oppcom.o ( 𝜑𝐴 𝑂 𝐵 )
Assertion oppne3 ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 hpg.p 𝑃 = ( Base ‘ 𝐺 )
2 hpg.d = ( dist ‘ 𝐺 )
3 hpg.i 𝐼 = ( Itv ‘ 𝐺 )
4 hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
5 opphl.l 𝐿 = ( LineG ‘ 𝐺 )
6 opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
7 opphl.g ( 𝜑𝐺 ∈ TarskiG )
8 oppcom.a ( 𝜑𝐴𝑃 )
9 oppcom.b ( 𝜑𝐵𝑃 )
10 oppcom.o ( 𝜑𝐴 𝑂 𝐵 )
11 1 2 3 4 5 6 7 8 9 10 oppne1 ( 𝜑 → ¬ 𝐴𝐷 )
12 7 ad3antrrr ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG )
13 8 ad3antrrr ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴𝑃 )
14 6 ad3antrrr ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐷 ∈ ran 𝐿 )
15 simplr ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡𝐷 )
16 1 5 3 12 14 15 tglnpt ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡𝑃 )
17 simpr ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) )
18 simpllr ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 = 𝐵 )
19 18 oveq2d ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 𝐼 𝐴 ) = ( 𝐴 𝐼 𝐵 ) )
20 17 19 eleqtrrd ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) )
21 1 2 3 12 13 16 20 axtgbtwnid ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 = 𝑡 )
22 21 15 eqeltrd ( ( ( ( 𝜑𝐴 = 𝐵 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴𝐷 )
23 1 2 3 4 8 9 islnopp ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷 ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) )
24 10 23 mpbid ( 𝜑 → ( ( ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷 ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) )
25 24 simprd ( 𝜑 → ∃ 𝑡𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) )
26 25 adantr ( ( 𝜑𝐴 = 𝐵 ) → ∃ 𝑡𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) )
27 22 26 r19.29a ( ( 𝜑𝐴 = 𝐵 ) → 𝐴𝐷 )
28 11 27 mtand ( 𝜑 → ¬ 𝐴 = 𝐵 )
29 28 neqned ( 𝜑𝐴𝐵 )