Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
oppnid.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
9 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
10 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
11 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐷 ∈ ran 𝐿 ) |
12 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝑡 ∈ 𝐷 ) |
13 |
1 5 3 9 11 12
|
tglnpt |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝑡 ∈ 𝑃 ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) |
15 |
1 2 3 9 10 13 14
|
axtgbtwnid |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐴 = 𝑡 ) |
16 |
15 12
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐴 ∈ 𝐷 ) |
17 |
1 2 3 4 8 8
|
islnopp |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐴 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) ) ) |
18 |
17
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) |
19 |
16 18
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) → 𝐴 ∈ 𝐷 ) |
20 |
17
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) → ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷 ) ) |
21 |
20
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐴 𝑂 𝐴 ) → ¬ 𝐴 ∈ 𝐷 ) |
22 |
19 21
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐴 𝑂 𝐴 ) |