Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
10 |
1 2 3 4 5 6 7 8 9
|
isopos |
⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ ( Base ‘ 𝐾 ) ∈ dom ( lub ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) ∈ dom ( glb ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → ( ( oc ‘ 𝐾 ) ‘ 𝑦 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑥 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 0. ‘ 𝐾 ) ) ) ) |
11 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( Base ‘ 𝐾 ) ∈ dom ( lub ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) ∈ dom ( glb ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → ( ( oc ‘ 𝐾 ) ‘ 𝑦 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑥 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 0. ‘ 𝐾 ) ) ) → 𝐾 ∈ Poset ) |
12 |
10 11
|
sylbi |
⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |