Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
oppr0.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
5 |
3 4 2
|
grpidval |
⊢ 0 = ( ℩ 𝑦 ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑥 ) ) ) |
6 |
1 3
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
7 |
1 4
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑂 ) = ( 0g ‘ 𝑂 ) |
9 |
6 7 8
|
grpidval |
⊢ ( 0g ‘ 𝑂 ) = ( ℩ 𝑦 ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑥 ) ) ) |
10 |
5 9
|
eqtr4i |
⊢ 0 = ( 0g ‘ 𝑂 ) |