Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
oppr1.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
6 |
3 4 1 5
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
7 |
6
|
eqeq1i |
⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) |
8 |
3 4 1 5
|
opprmul |
⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
9 |
8
|
eqeq1i |
⊢ ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
10 |
7 9
|
anbi12ci |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
13 |
12
|
iotabii |
⊢ ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ 𝑂 ) = ( mulGrp ‘ 𝑂 ) |
15 |
1 3
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
16 |
14 15
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑂 ) ) |
17 |
14 5
|
mgpplusg |
⊢ ( .r ‘ 𝑂 ) = ( +g ‘ ( mulGrp ‘ 𝑂 ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) |
19 |
16 17 18
|
grpidval |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ) |
20 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
21 |
20 3
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
22 |
20 4
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
24 |
21 22 23
|
grpidval |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
25 |
13 19 24
|
3eqtr4i |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
26 |
|
eqid |
⊢ ( 1r ‘ 𝑂 ) = ( 1r ‘ 𝑂 ) |
27 |
14 26
|
ringidval |
⊢ ( 1r ‘ 𝑂 ) = ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) |
28 |
20 2
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
29 |
25 27 28
|
3eqtr4ri |
⊢ 1 = ( 1r ‘ 𝑂 ) |