Step |
Hyp |
Ref |
Expression |
1 |
|
oppreqg.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
oppr2idl.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
incom |
⊢ ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ 𝑂 ) ) = ( ( LIdeal ‘ 𝑂 ) ∩ ( LIdeal ‘ 𝑅 ) ) |
4 |
1 2
|
opprlidlabs |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) ) |
5 |
4
|
ineq2d |
⊢ ( 𝜑 → ( ( LIdeal ‘ 𝑂 ) ∩ ( LIdeal ‘ 𝑅 ) ) = ( ( LIdeal ‘ 𝑂 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) ) ) |
6 |
3 5
|
eqtrid |
⊢ ( 𝜑 → ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ 𝑂 ) ) = ( ( LIdeal ‘ 𝑂 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) ) ) |
7 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( LIdeal ‘ 𝑂 ) = ( LIdeal ‘ 𝑂 ) |
9 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
10 |
7 1 8 9
|
2idlval |
⊢ ( 2Ideal ‘ 𝑅 ) = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ 𝑂 ) ) |
11 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
12 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) |
13 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑂 ) = ( 2Ideal ‘ 𝑂 ) |
14 |
8 11 12 13
|
2idlval |
⊢ ( 2Ideal ‘ 𝑂 ) = ( ( LIdeal ‘ 𝑂 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) ) |
15 |
6 10 14
|
3eqtr4g |
⊢ ( 𝜑 → ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑂 ) ) |