Step |
Hyp |
Ref |
Expression |
1 |
|
opprabs.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
opprabs.m |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
opprabs.1 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
opprabs.2 |
⊢ ( 𝜑 → Fun 𝑅 ) |
5 |
|
opprabs.3 |
⊢ ( 𝜑 → ( .r ‘ ndx ) ∈ dom 𝑅 ) |
6 |
|
opprabs.4 |
⊢ ( 𝜑 → · Fn ( 𝐵 × 𝐵 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
9 |
7 2 1 8
|
opprmulfval |
⊢ ( .r ‘ 𝑂 ) = tpos · |
10 |
9
|
tposeqi |
⊢ tpos ( .r ‘ 𝑂 ) = tpos tpos · |
11 |
|
fnrel |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → Rel · ) |
12 |
|
relxp |
⊢ Rel ( 𝐵 × 𝐵 ) |
13 |
|
fndm |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → dom · = ( 𝐵 × 𝐵 ) ) |
14 |
13
|
releqd |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → ( Rel dom · ↔ Rel ( 𝐵 × 𝐵 ) ) ) |
15 |
12 14
|
mpbiri |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → Rel dom · ) |
16 |
|
tpostpos2 |
⊢ ( ( Rel · ∧ Rel dom · ) → tpos tpos · = · ) |
17 |
11 15 16
|
syl2anc |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → tpos tpos · = · ) |
18 |
10 17
|
eqtrid |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → tpos ( .r ‘ 𝑂 ) = · ) |
19 |
6 18
|
syl |
⊢ ( 𝜑 → tpos ( .r ‘ 𝑂 ) = · ) |
20 |
19 2
|
eqtrdi |
⊢ ( 𝜑 → tpos ( .r ‘ 𝑂 ) = ( .r ‘ 𝑅 ) ) |
21 |
20
|
opeq2d |
⊢ ( 𝜑 → 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 = 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
23 |
1 7
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
24 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
25 |
23 8 24
|
opprval |
⊢ ( oppr ‘ 𝑂 ) = ( 𝑂 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) |
26 |
7 2 1
|
opprval |
⊢ 𝑂 = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) |
27 |
26
|
oveq1i |
⊢ ( 𝑂 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) |
28 |
25 27
|
eqtri |
⊢ ( oppr ‘ 𝑂 ) = ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) |
29 |
|
fvex |
⊢ ( .r ‘ 𝑂 ) ∈ V |
30 |
29
|
tposex |
⊢ tpos ( .r ‘ 𝑂 ) ∈ V |
31 |
|
setsabs |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ tpos ( .r ‘ 𝑂 ) ∈ V ) → ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
32 |
30 31
|
mpan2 |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
33 |
28 32
|
eqtrid |
⊢ ( 𝑅 ∈ 𝑉 → ( oppr ‘ 𝑂 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
34 |
3 33
|
syl |
⊢ ( 𝜑 → ( oppr ‘ 𝑂 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
35 |
|
mulridx |
⊢ .r = Slot ( .r ‘ ndx ) |
36 |
35 3 4 5
|
setsidvald |
⊢ ( 𝜑 → 𝑅 = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
37 |
22 34 36
|
3eqtr4rd |
⊢ ( 𝜑 → 𝑅 = ( oppr ‘ 𝑂 ) ) |