Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opprc | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 〈 𝐴 , 𝐵 〉 = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif | ⊢ 〈 𝐴 , 𝐵 〉 = if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) | |
2 | iffalse | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) = ∅ ) | |
3 | 1 2 | eqtrid | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 〈 𝐴 , 𝐵 〉 = ∅ ) |