Metamath Proof Explorer


Theorem opprdomn

Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1 𝑂 = ( oppr𝑅 )
Assertion opprdomn ( 𝑅 ∈ Domn → 𝑂 ∈ Domn )

Proof

Step Hyp Ref Expression
1 opprdomn.1 𝑂 = ( oppr𝑅 )
2 1 opprdomnb ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn )
3 2 biimpi ( 𝑅 ∈ Domn → 𝑂 ∈ Domn )