Step |
Hyp |
Ref |
Expression |
1 |
|
opprdomn.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
3 |
1
|
opprnzr |
⊢ ( 𝑅 ∈ NzRing → 𝑂 ∈ NzRing ) |
4 |
2 3
|
syl |
⊢ ( 𝑅 ∈ Domn → 𝑂 ∈ NzRing ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
8 |
5 6 7
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑥 = ( 0g ‘ 𝑅 ) ) ) ) |
9 |
8
|
3com23 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑥 = ( 0g ‘ 𝑅 ) ) ) ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
11 |
5 6 1 10
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
12 |
11
|
eqeq1i |
⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
13 |
|
orcom |
⊢ ( ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ↔ ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑥 = ( 0g ‘ 𝑅 ) ) ) |
14 |
9 12 13
|
3bitr4g |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) |
15 |
14
|
biimpd |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) |
16 |
15
|
3expb |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) |
17 |
16
|
ralrimivva |
⊢ ( 𝑅 ∈ Domn → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) |
18 |
1 5
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
19 |
1 7
|
oppr0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
20 |
18 10 19
|
isdomn |
⊢ ( 𝑂 ∈ Domn ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) ) |
21 |
4 17 20
|
sylanbrc |
⊢ ( 𝑅 ∈ Domn → 𝑂 ∈ Domn ) |