Metamath Proof Explorer


Theorem opprdomn

Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1 𝑂 = ( oppr𝑅 )
Assertion opprdomn ( 𝑅 ∈ Domn → 𝑂 ∈ Domn )

Proof

Step Hyp Ref Expression
1 opprdomn.1 𝑂 = ( oppr𝑅 )
2 domnnzr ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing )
3 1 opprnzr ( 𝑅 ∈ NzRing → 𝑂 ∈ NzRing )
4 2 3 syl ( 𝑅 ∈ Domn → 𝑂 ∈ NzRing )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 eqid ( 0g𝑅 ) = ( 0g𝑅 )
8 5 6 7 domneq0 ( ( 𝑅 ∈ Domn ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 0g𝑅 ) ↔ ( 𝑦 = ( 0g𝑅 ) ∨ 𝑥 = ( 0g𝑅 ) ) ) )
9 8 3com23 ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 0g𝑅 ) ↔ ( 𝑦 = ( 0g𝑅 ) ∨ 𝑥 = ( 0g𝑅 ) ) ) )
10 eqid ( .r𝑂 ) = ( .r𝑂 )
11 5 6 1 10 opprmul ( 𝑥 ( .r𝑂 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑥 )
12 11 eqeq1i ( ( 𝑥 ( .r𝑂 ) 𝑦 ) = ( 0g𝑅 ) ↔ ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 0g𝑅 ) )
13 orcom ( ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ↔ ( 𝑦 = ( 0g𝑅 ) ∨ 𝑥 = ( 0g𝑅 ) ) )
14 9 12 13 3bitr4g ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r𝑂 ) 𝑦 ) = ( 0g𝑅 ) ↔ ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) )
15 14 biimpd ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r𝑂 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) )
16 15 3expb ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r𝑂 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) )
17 16 ralrimivva ( 𝑅 ∈ Domn → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑂 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) )
18 1 5 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 )
19 1 7 oppr0 ( 0g𝑅 ) = ( 0g𝑂 )
20 18 10 19 isdomn ( 𝑂 ∈ Domn ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑂 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) ) )
21 4 17 20 sylanbrc ( 𝑅 ∈ Domn → 𝑂 ∈ Domn )