Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opprdomn.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
Assertion | opprdomn | ⊢ ( 𝑅 ∈ Domn → 𝑂 ∈ Domn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprdomn.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
2 | 1 | opprdomnb | ⊢ ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn ) |
3 | 2 | biimpi | ⊢ ( 𝑅 ∈ Domn → 𝑂 ∈ Domn ) |