Metamath Proof Explorer


Theorem opprdomnb

Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn . (Contributed by SN, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1 𝑂 = ( oppr𝑅 )
Assertion opprdomnb ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn )

Proof

Step Hyp Ref Expression
1 opprdomn.1 𝑂 = ( oppr𝑅 )
2 1 opprnzrb ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 1 3 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 )
5 eqid ( .r𝑅 ) = ( .r𝑅 )
6 eqid ( .r𝑂 ) = ( .r𝑂 )
7 3 5 1 6 opprmul ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 𝑥 ( .r𝑅 ) 𝑦 )
8 7 eqcomi ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 𝑦 ( .r𝑂 ) 𝑥 )
9 eqid ( 0g𝑅 ) = ( 0g𝑅 )
10 1 9 oppr0 ( 0g𝑅 ) = ( 0g𝑂 )
11 8 10 eqeq12i ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) ↔ ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) )
12 10 eqeq2i ( 𝑥 = ( 0g𝑅 ) ↔ 𝑥 = ( 0g𝑂 ) )
13 10 eqeq2i ( 𝑦 = ( 0g𝑅 ) ↔ 𝑦 = ( 0g𝑂 ) )
14 12 13 orbi12i ( ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ↔ ( 𝑥 = ( 0g𝑂 ) ∨ 𝑦 = ( 0g𝑂 ) ) )
15 orcom ( ( 𝑥 = ( 0g𝑂 ) ∨ 𝑦 = ( 0g𝑂 ) ) ↔ ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) )
16 14 15 bitri ( ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ↔ ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) )
17 11 16 imbi12i ( ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) ↔ ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) )
18 4 17 raleqbii ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) )
19 4 18 raleqbii ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) )
20 ralcom ( ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) )
21 19 20 bitri ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) )
22 2 21 anbi12i ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) ) ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) ) )
23 3 5 9 isdomn ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) → ( 𝑥 = ( 0g𝑅 ) ∨ 𝑦 = ( 0g𝑅 ) ) ) ) )
24 eqid ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 )
25 eqid ( 0g𝑂 ) = ( 0g𝑂 )
26 24 6 25 isdomn ( 𝑂 ∈ Domn ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r𝑂 ) 𝑥 ) = ( 0g𝑂 ) → ( 𝑦 = ( 0g𝑂 ) ∨ 𝑥 = ( 0g𝑂 ) ) ) ) )
27 22 23 26 3bitr4i ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn )