Step |
Hyp |
Ref |
Expression |
1 |
|
opprdomn.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
1
|
opprnzrb |
⊢ ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
1 3
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
7 |
3 5 1 6
|
opprmul |
⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
8 |
7
|
eqcomi |
⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
1 9
|
oppr0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
11 |
8 10
|
eqeq12i |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) ) |
12 |
10
|
eqeq2i |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) ↔ 𝑥 = ( 0g ‘ 𝑂 ) ) |
13 |
10
|
eqeq2i |
⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) ↔ 𝑦 = ( 0g ‘ 𝑂 ) ) |
14 |
12 13
|
orbi12i |
⊢ ( ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ↔ ( 𝑥 = ( 0g ‘ 𝑂 ) ∨ 𝑦 = ( 0g ‘ 𝑂 ) ) ) |
15 |
|
orcom |
⊢ ( ( 𝑥 = ( 0g ‘ 𝑂 ) ∨ 𝑦 = ( 0g ‘ 𝑂 ) ) ↔ ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ↔ ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) |
17 |
11 16
|
imbi12i |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
18 |
4 17
|
raleqbii |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
19 |
4 18
|
raleqbii |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
20 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
21 |
19 20
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
22 |
2 21
|
anbi12i |
⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) ) |
23 |
3 5 9
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑂 ) = ( 0g ‘ 𝑂 ) |
26 |
24 6 25
|
isdomn |
⊢ ( 𝑂 ∈ Domn ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) ) |
27 |
22 23 26
|
3bitr4i |
⊢ ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn ) |