Step |
Hyp |
Ref |
Expression |
1 |
|
oppreqg.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
oppreqg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
6 |
2 3 4 5
|
eqgfval |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑅 ~QG 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) } ) |
7 |
1
|
fvexi |
⊢ 𝑂 ∈ V |
8 |
1 2
|
opprbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
9 |
1 3
|
opprneg |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑂 ) |
10 |
1 4
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
11 |
|
eqid |
⊢ ( 𝑂 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) |
12 |
8 9 10 11
|
eqgfval |
⊢ ( ( 𝑂 ∈ V ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑂 ~QG 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) } ) |
13 |
7 12
|
mpan |
⊢ ( 𝐼 ⊆ 𝐵 → ( 𝑂 ~QG 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) } ) |
14 |
13
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑂 ~QG 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) } ) |
15 |
6 14
|
eqtr4d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |