Metamath Proof Explorer


Theorem oppreqg

Description: Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses oppreqg.o 𝑂 = ( oppr𝑅 )
oppreqg.b 𝐵 = ( Base ‘ 𝑅 )
Assertion oppreqg ( ( 𝑅𝑉𝐼𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) )

Proof

Step Hyp Ref Expression
1 oppreqg.o 𝑂 = ( oppr𝑅 )
2 oppreqg.b 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( invg𝑅 ) = ( invg𝑅 )
4 eqid ( +g𝑅 ) = ( +g𝑅 )
5 eqid ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 )
6 2 3 4 5 eqgfval ( ( 𝑅𝑉𝐼𝐵 ) → ( 𝑅 ~QG 𝐼 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ) } )
7 1 fvexi 𝑂 ∈ V
8 1 2 opprbas 𝐵 = ( Base ‘ 𝑂 )
9 1 3 opprneg ( invg𝑅 ) = ( invg𝑂 )
10 1 4 oppradd ( +g𝑅 ) = ( +g𝑂 )
11 eqid ( 𝑂 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 )
12 8 9 10 11 eqgfval ( ( 𝑂 ∈ V ∧ 𝐼𝐵 ) → ( 𝑂 ~QG 𝐼 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ) } )
13 7 12 mpan ( 𝐼𝐵 → ( 𝑂 ~QG 𝐼 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ) } )
14 13 adantl ( ( 𝑅𝑉𝐼𝐵 ) → ( 𝑂 ~QG 𝐼 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ) } )
15 6 14 eqtr4d ( ( 𝑅𝑉𝐼𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) )