| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprirred.1 | ⊢ 𝑆  =  ( oppr ‘ 𝑅 ) | 
						
							| 2 |  | opprirred.2 | ⊢ 𝐼  =  ( Irred ‘ 𝑅 ) | 
						
							| 3 |  | ralcom | ⊢ ( ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 )  ≠  𝑥  ↔  ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 )  ≠  𝑥 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 7 | 4 5 1 6 | opprmul | ⊢ ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) | 
						
							| 8 | 7 | neeq1i | ⊢ ( ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 )  ≠  𝑥  ↔  ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 )  ≠  𝑥 ) | 
						
							| 9 | 8 | 2ralbii | ⊢ ( ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 )  ≠  𝑥  ↔  ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 )  ≠  𝑥 ) | 
						
							| 10 | 3 9 | bitr4i | ⊢ ( ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 )  ≠  𝑥  ↔  ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 )  ≠  𝑥 ) | 
						
							| 11 | 10 | anbi2i | ⊢ ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) )  ∧  ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 )  ≠  𝑥 )  ↔  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) )  ∧  ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 )  ≠  𝑥 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) )  =  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) | 
						
							| 14 | 4 12 2 13 5 | isirred | ⊢ ( 𝑥  ∈  𝐼  ↔  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) )  ∧  ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 )  ≠  𝑥 ) ) | 
						
							| 15 | 1 4 | opprbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑆 ) | 
						
							| 16 | 12 1 | opprunit | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑆 ) | 
						
							| 17 |  | eqid | ⊢ ( Irred ‘ 𝑆 )  =  ( Irred ‘ 𝑆 ) | 
						
							| 18 | 15 16 17 13 6 | isirred | ⊢ ( 𝑥  ∈  ( Irred ‘ 𝑆 )  ↔  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) )  ∧  ∀ 𝑦  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ∀ 𝑧  ∈  ( ( Base ‘ 𝑅 )  ∖  ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 )  ≠  𝑥 ) ) | 
						
							| 19 | 11 14 18 | 3bitr4i | ⊢ ( 𝑥  ∈  𝐼  ↔  𝑥  ∈  ( Irred ‘ 𝑆 ) ) | 
						
							| 20 | 19 | eqriv | ⊢ 𝐼  =  ( Irred ‘ 𝑆 ) |