| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprbas.1 | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 2 |  | opprlemOLD.2 | ⊢ 𝐸  =  Slot  𝑁 | 
						
							| 3 |  | opprlemOLD.3 | ⊢ 𝑁  ∈  ℕ | 
						
							| 4 |  | opprlemOLD.4 | ⊢ 𝑁  <  3 | 
						
							| 5 | 2 3 | ndxid | ⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx ) | 
						
							| 6 | 3 | nnrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 7 | 6 4 | ltneii | ⊢ 𝑁  ≠  3 | 
						
							| 8 | 2 3 | ndxarg | ⊢ ( 𝐸 ‘ ndx )  =  𝑁 | 
						
							| 9 |  | mulrndx | ⊢ ( .r ‘ ndx )  =  3 | 
						
							| 10 | 8 9 | neeq12i | ⊢ ( ( 𝐸 ‘ ndx )  ≠  ( .r ‘ ndx )  ↔  𝑁  ≠  3 ) | 
						
							| 11 | 7 10 | mpbir | ⊢ ( 𝐸 ‘ ndx )  ≠  ( .r ‘ ndx ) | 
						
							| 12 | 5 11 | setsnid | ⊢ ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ ( 𝑅  sSet  〈 ( .r ‘ ndx ) ,  tpos  ( .r ‘ 𝑅 ) 〉 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 15 | 13 14 1 | opprval | ⊢ 𝑂  =  ( 𝑅  sSet  〈 ( .r ‘ ndx ) ,  tpos  ( .r ‘ 𝑅 ) 〉 ) | 
						
							| 16 | 15 | fveq2i | ⊢ ( 𝐸 ‘ 𝑂 )  =  ( 𝐸 ‘ ( 𝑅  sSet  〈 ( .r ‘ ndx ) ,  tpos  ( .r ‘ 𝑅 ) 〉 ) ) | 
						
							| 17 | 12 16 | eqtr4i | ⊢ ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑂 ) |