Metamath Proof Explorer


Theorem opprmul

Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypotheses opprval.1 𝐵 = ( Base ‘ 𝑅 )
opprval.2 · = ( .r𝑅 )
opprval.3 𝑂 = ( oppr𝑅 )
opprmulfval.4 = ( .r𝑂 )
Assertion opprmul ( 𝑋 𝑌 ) = ( 𝑌 · 𝑋 )

Proof

Step Hyp Ref Expression
1 opprval.1 𝐵 = ( Base ‘ 𝑅 )
2 opprval.2 · = ( .r𝑅 )
3 opprval.3 𝑂 = ( oppr𝑅 )
4 opprmulfval.4 = ( .r𝑂 )
5 1 2 3 4 opprmulfval = tpos ·
6 5 oveqi ( 𝑋 𝑌 ) = ( 𝑋 tpos · 𝑌 )
7 ovtpos ( 𝑋 tpos · 𝑌 ) = ( 𝑌 · 𝑋 )
8 6 7 eqtri ( 𝑋 𝑌 ) = ( 𝑌 · 𝑋 )