Step |
Hyp |
Ref |
Expression |
1 |
|
oppreqg.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
1
|
opprsubg |
⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |
3 |
2
|
eleq2i |
⊢ ( 𝑔 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑔 ∈ ( SubGrp ‘ 𝑂 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑔 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝑔 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝑔 ) ) ↔ ( 𝑔 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝑔 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝑔 ) ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
7 |
5 6
|
isnsg2 |
⊢ ( 𝑔 ∈ ( NrmSGrp ‘ 𝑅 ) ↔ ( 𝑔 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝑔 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝑔 ) ) ) |
8 |
1 5
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
9 |
1 6
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
10 |
8 9
|
isnsg2 |
⊢ ( 𝑔 ∈ ( NrmSGrp ‘ 𝑂 ) ↔ ( 𝑔 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝑔 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝑔 ) ) ) |
11 |
4 7 10
|
3bitr4i |
⊢ ( 𝑔 ∈ ( NrmSGrp ‘ 𝑅 ) ↔ 𝑔 ∈ ( NrmSGrp ‘ 𝑂 ) ) |
12 |
11
|
eqriv |
⊢ ( NrmSGrp ‘ 𝑅 ) = ( NrmSGrp ‘ 𝑂 ) |