Metamath Proof Explorer


Theorem opprnzrb

Description: The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr . (Contributed by SN, 20-Jun-2025)

Ref Expression
Hypothesis opprnzr.1 𝑂 = ( oppr𝑅 )
Assertion opprnzrb ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing )

Proof

Step Hyp Ref Expression
1 opprnzr.1 𝑂 = ( oppr𝑅 )
2 1 opprringb ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring )
3 2 anbi1i ( ( 𝑅 ∈ Ring ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) ↔ ( 𝑂 ∈ Ring ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) )
4 eqid ( 1r𝑅 ) = ( 1r𝑅 )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 4 5 isnzr ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) )
7 1 4 oppr1 ( 1r𝑅 ) = ( 1r𝑂 )
8 1 5 oppr0 ( 0g𝑅 ) = ( 0g𝑂 )
9 7 8 isnzr ( 𝑂 ∈ NzRing ↔ ( 𝑂 ∈ Ring ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) )
10 3 6 9 3bitr4i ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing )