Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
opprqus.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
3 |
|
opprqus.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
4 |
|
opprqus1r.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
opprqus1r.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
7 |
|
fvexd |
⊢ ( 𝜑 → ( oppr ‘ 𝑄 ) ∈ V ) |
8 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ∈ V ) |
9 |
5
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
11 |
1 10
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
13 |
1 2 3 4 12
|
opprqusbas |
⊢ ( 𝜑 → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
14 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑅 ∈ Ring ) |
15 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
18 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
19 |
18 16
|
opprbas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
20 |
17 19
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑄 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑄 ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
23 |
22 19
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑄 ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑄 ) ) |
25 |
1 2 3 14 15 16 21 24
|
opprqusmulr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) ) |
26 |
6 7 8 13 25
|
urpropd |
⊢ ( 𝜑 → ( 1r ‘ ( oppr ‘ 𝑄 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |