Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
opprqus.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
3 |
|
opprqus.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
4 |
|
opprqusbas.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
5 |
|
opprqusbas.i |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
6 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
8 |
6 7
|
opprbas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
9 |
2 1
|
oppreqg |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
10 |
4 5 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
11 |
10
|
qseq2d |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) = ( 𝐵 / ( 𝑂 ~QG 𝐼 ) ) ) |
12 |
3
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
13 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
14 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) ∈ V ) |
15 |
12 13 14 4
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
16 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
17 |
2 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑂 ) ) |
19 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑂 ~QG 𝐼 ) ∈ V ) |
20 |
2
|
fvexi |
⊢ 𝑂 ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → 𝑂 ∈ V ) |
22 |
16 18 19 21
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑂 ~QG 𝐼 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
23 |
11 15 22
|
3eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
24 |
8 23
|
eqtr3id |
⊢ ( 𝜑 → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |