Metamath Proof Explorer


Theorem opprqusbas

Description: The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses opprqus.b 𝐵 = ( Base ‘ 𝑅 )
opprqus.o 𝑂 = ( oppr𝑅 )
opprqus.q 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
opprqusbas.r ( 𝜑𝑅𝑉 )
opprqusbas.i ( 𝜑𝐼𝐵 )
Assertion opprqusbas ( 𝜑 → ( Base ‘ ( oppr𝑄 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) )

Proof

Step Hyp Ref Expression
1 opprqus.b 𝐵 = ( Base ‘ 𝑅 )
2 opprqus.o 𝑂 = ( oppr𝑅 )
3 opprqus.q 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
4 opprqusbas.r ( 𝜑𝑅𝑉 )
5 opprqusbas.i ( 𝜑𝐼𝐵 )
6 eqid ( oppr𝑄 ) = ( oppr𝑄 )
7 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
8 6 7 opprbas ( Base ‘ 𝑄 ) = ( Base ‘ ( oppr𝑄 ) )
9 2 1 oppreqg ( ( 𝑅𝑉𝐼𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) )
10 4 5 9 syl2anc ( 𝜑 → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) )
11 10 qseq2d ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) = ( 𝐵 / ( 𝑂 ~QG 𝐼 ) ) )
12 3 a1i ( 𝜑𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) )
13 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝑅 ) )
14 ovexd ( 𝜑 → ( 𝑅 ~QG 𝐼 ) ∈ V )
15 12 13 14 4 qusbas ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) )
16 eqidd ( 𝜑 → ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) )
17 2 1 opprbas 𝐵 = ( Base ‘ 𝑂 )
18 17 a1i ( 𝜑𝐵 = ( Base ‘ 𝑂 ) )
19 ovexd ( 𝜑 → ( 𝑂 ~QG 𝐼 ) ∈ V )
20 2 fvexi 𝑂 ∈ V
21 20 a1i ( 𝜑𝑂 ∈ V )
22 16 18 19 21 qusbas ( 𝜑 → ( 𝐵 / ( 𝑂 ~QG 𝐼 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) )
23 11 15 22 3eqtr3d ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) )
24 8 23 eqtr3id ( 𝜑 → ( Base ‘ ( oppr𝑄 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) )