Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
opprqus.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
3 |
|
opprqus.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
4 |
|
opprqus1r.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
opprqus1r.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
6 |
|
opprqusmulr.e |
⊢ 𝐸 = ( Base ‘ 𝑄 ) |
7 |
|
opprqusmulr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
8 |
|
opprqusmulr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
10 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
11 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑄 ) ) = ( .r ‘ ( oppr ‘ 𝑄 ) ) |
12 |
6 9 10 11
|
opprmul |
⊢ ( 𝑋 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑌 ) = ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
14 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑅 ∈ Ring ) |
15 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
16 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑞 ∈ 𝐵 ) |
17 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑝 ∈ 𝐵 ) |
18 |
3 1 13 9 14 15 16 17
|
qusmul2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) ) |
19 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
20 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
21 |
19 20
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ) |
22 |
|
eqid |
⊢ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) |
23 |
2 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
24 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
25 |
|
eqid |
⊢ ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
26 |
2
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
27 |
4 26
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
28 |
27
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑂 ∈ Ring ) |
29 |
2 4
|
oppr2idl |
⊢ ( 𝜑 → ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑂 ) ) |
30 |
5 29
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑂 ) ) |
31 |
30
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑂 ) ) |
32 |
22 23 24 25 28 31 17 16
|
qusmul2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) = [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
33 |
5
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
34 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
35 |
1 34
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
36 |
33 35
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
37 |
2 1
|
oppreqg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
38 |
4 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
39 |
38
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
40 |
39
|
eceq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) = [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ) |
41 |
20 40
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑋 = [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ) |
42 |
39
|
eceq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) = [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) |
43 |
19 42
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 = [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) |
44 |
41 43
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) = ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) ) |
45 |
1 13 2 24
|
opprmul |
⊢ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) = ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) |
46 |
45
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) = ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ) |
47 |
46
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) ) |
48 |
39
|
eceq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
49 |
47 48
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
50 |
32 44 49
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) = [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) ) |
51 |
18 21 50
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
52 |
10 6
|
opprbas |
⊢ 𝐸 = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
53 |
8 52
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
55 |
3
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
56 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
57 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) ∈ V ) |
58 |
55 56 57 4
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
59 |
6 52
|
eqtr3i |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
60 |
58 59
|
eqtr2di |
⊢ ( 𝜑 → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
62 |
54 61
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
63 |
|
elqsi |
⊢ ( 𝑌 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
64 |
62 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
65 |
51 64
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
66 |
7 52
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
67 |
66 60
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
68 |
|
elqsi |
⊢ ( 𝑋 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑝 ∈ 𝐵 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐵 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
70 |
65 69
|
r19.29a |
⊢ ( 𝜑 → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
71 |
12 70
|
eqtrid |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |