Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
1 2
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
5 |
1 4
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
6 |
3 5
|
grpprop |
⊢ ( 𝑅 ∈ Grp ↔ 𝑂 ∈ Grp ) |
7 |
|
biid |
⊢ ( 𝑥 ⊆ ( Base ‘ 𝑅 ) ↔ 𝑥 ⊆ ( Base ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑥 ) = ( 𝑅 ↾s 𝑥 ) |
9 |
8 2
|
ressbas |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑥 ) ) ) |
10 |
9
|
elv |
⊢ ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑥 ) ) |
11 |
|
eqid |
⊢ ( 𝑂 ↾s 𝑥 ) = ( 𝑂 ↾s 𝑥 ) |
12 |
11 3
|
ressbas |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑂 ↾s 𝑥 ) ) ) |
13 |
12
|
elv |
⊢ ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑂 ↾s 𝑥 ) ) |
14 |
10 13
|
eqtr3i |
⊢ ( Base ‘ ( 𝑅 ↾s 𝑥 ) ) = ( Base ‘ ( 𝑂 ↾s 𝑥 ) ) |
15 |
8 4
|
ressplusg |
⊢ ( 𝑥 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑥 ) ) ) |
16 |
11 5
|
ressplusg |
⊢ ( 𝑥 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑂 ↾s 𝑥 ) ) ) |
17 |
15 16
|
eqtr3d |
⊢ ( 𝑥 ∈ V → ( +g ‘ ( 𝑅 ↾s 𝑥 ) ) = ( +g ‘ ( 𝑂 ↾s 𝑥 ) ) ) |
18 |
17
|
elv |
⊢ ( +g ‘ ( 𝑅 ↾s 𝑥 ) ) = ( +g ‘ ( 𝑂 ↾s 𝑥 ) ) |
19 |
14 18
|
grpprop |
⊢ ( ( 𝑅 ↾s 𝑥 ) ∈ Grp ↔ ( 𝑂 ↾s 𝑥 ) ∈ Grp ) |
20 |
6 7 19
|
3anbi123i |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑥 ) ∈ Grp ) ↔ ( 𝑂 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑂 ↾s 𝑥 ) ∈ Grp ) ) |
21 |
2
|
issubg |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝑅 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑥 ) ∈ Grp ) ) |
22 |
3
|
issubg |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑂 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑂 ↾s 𝑥 ) ∈ Grp ) ) |
23 |
20 21 22
|
3bitr4i |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) |
24 |
23
|
eqriv |
⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |