Metamath Proof Explorer


Theorem opprsubrg

Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)

Ref Expression
Hypothesis opprsubrg.o 𝑂 = ( oppr𝑅 )
Assertion opprsubrg ( SubRing ‘ 𝑅 ) = ( SubRing ‘ 𝑂 )

Proof

Step Hyp Ref Expression
1 opprsubrg.o 𝑂 = ( oppr𝑅 )
2 subrgrcl ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring )
3 subrgrcl ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) → 𝑂 ∈ Ring )
4 1 opprringb ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring )
5 3 4 sylibr ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) → 𝑅 ∈ Ring )
6 1 opprsubg ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 )
7 6 a1i ( 𝑅 ∈ Ring → ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) )
8 7 eleq2d ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) )
9 ralcom ( ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧𝑥𝑦𝑥 ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 eqid ( .r𝑅 ) = ( .r𝑅 )
12 eqid ( .r𝑂 ) = ( .r𝑂 )
13 10 11 1 12 opprmul ( 𝑧 ( .r𝑂 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑧 )
14 13 eleq1i ( ( 𝑧 ( .r𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 )
15 14 2ralbii ( ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑧𝑥𝑦𝑥 ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 )
16 9 15 bitr4i ( ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑂 ) 𝑦 ) ∈ 𝑥 )
17 16 a1i ( 𝑅 ∈ Ring → ( ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑂 ) 𝑦 ) ∈ 𝑥 ) )
18 8 17 3anbi13d ( 𝑅 ∈ Ring → ( ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑂 ) 𝑦 ) ∈ 𝑥 ) ) )
19 eqid ( 1r𝑅 ) = ( 1r𝑅 )
20 10 19 11 issubrg2 ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ 𝑥 ) ) )
21 1 10 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 )
22 1 19 oppr1 ( 1r𝑅 ) = ( 1r𝑂 )
23 21 22 12 issubrg2 ( 𝑂 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑂 ) 𝑦 ) ∈ 𝑥 ) ) )
24 4 23 sylbi ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑂 ) 𝑦 ) ∈ 𝑥 ) ) )
25 18 20 24 3bitr4d ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRing ‘ 𝑂 ) ) )
26 2 5 25 pm5.21nii ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRing ‘ 𝑂 ) )
27 26 eqriv ( SubRing ‘ 𝑅 ) = ( SubRing ‘ 𝑂 )