Step |
Hyp |
Ref |
Expression |
1 |
|
opprsubrg.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
subrgrcl |
⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
3 |
|
subrgrcl |
⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) → 𝑂 ∈ Ring ) |
4 |
1
|
opprringb |
⊢ ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) → 𝑅 ∈ Ring ) |
6 |
1
|
opprsubg |
⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |
7 |
6
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) ) |
9 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
13 |
10 11 1 12
|
opprmul |
⊢ ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) |
14 |
13
|
eleq1i |
⊢ ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) |
15 |
14
|
2ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) |
16 |
9 15
|
bitr4i |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) |
17 |
16
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) |
18 |
8 17
|
3anbi13d |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
20 |
10 19 11
|
issubrg2 |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) ) ) |
21 |
1 10
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
22 |
1 19
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) |
23 |
21 22 12
|
issubrg2 |
⊢ ( 𝑂 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
24 |
4 23
|
sylbi |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
25 |
18 20 24
|
3bitr4d |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRing ‘ 𝑂 ) ) ) |
26 |
2 5 25
|
pm5.21nii |
⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRing ‘ 𝑂 ) ) |
27 |
26
|
eqriv |
⊢ ( SubRing ‘ 𝑅 ) = ( SubRing ‘ 𝑂 ) |