Metamath Proof Explorer


Theorem opprsubrng

Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis opprsubrng.o 𝑂 = ( oppr𝑅 )
Assertion opprsubrng ( SubRng ‘ 𝑅 ) = ( SubRng ‘ 𝑂 )

Proof

Step Hyp Ref Expression
1 opprsubrng.o 𝑂 = ( oppr𝑅 )
2 subrngrcl ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng )
3 subrngrcl ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) → 𝑂 ∈ Rng )
4 1 opprrngb ( 𝑅 ∈ Rng ↔ 𝑂 ∈ Rng )
5 3 4 sylibr ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) → 𝑅 ∈ Rng )
6 1 opprsubg ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 )
7 6 a1i ( 𝑅 ∈ Rng → ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) )
8 7 eleq2d ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) )
9 ralcom ( ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦𝑥𝑧𝑥 ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 eqid ( .r𝑅 ) = ( .r𝑅 )
12 eqid ( .r𝑂 ) = ( .r𝑂 )
13 10 11 1 12 opprmul ( 𝑦 ( .r𝑂 ) 𝑧 ) = ( 𝑧 ( .r𝑅 ) 𝑦 )
14 13 eleq1i ( ( 𝑦 ( .r𝑂 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 )
15 14 2ralbii ( ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑂 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑦𝑥𝑧𝑥 ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 )
16 9 15 bitr4i ( ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑂 ) 𝑧 ) ∈ 𝑥 )
17 16 a1i ( 𝑅 ∈ Rng → ( ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑂 ) 𝑧 ) ∈ 𝑥 ) )
18 8 17 anbi12d ( 𝑅 ∈ Rng → ( ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑂 ) 𝑧 ) ∈ 𝑥 ) ) )
19 10 11 issubrng2 ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑧𝑥𝑦𝑥 ( 𝑧 ( .r𝑅 ) 𝑦 ) ∈ 𝑥 ) ) )
20 1 10 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 )
21 20 12 issubrng2 ( 𝑂 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑂 ) 𝑧 ) ∈ 𝑥 ) ) )
22 4 21 sylbi ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 ( .r𝑂 ) 𝑧 ) ∈ 𝑥 ) ) )
23 18 19 22 3bitr4d ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRng ‘ 𝑂 ) ) )
24 2 5 23 pm5.21nii ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRng ‘ 𝑂 ) )
25 24 eqriv ( SubRng ‘ 𝑅 ) = ( SubRng ‘ 𝑂 )