Step |
Hyp |
Ref |
Expression |
1 |
|
opprsubrng.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
subrngrcl |
⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
3 |
|
subrngrcl |
⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) → 𝑂 ∈ Rng ) |
4 |
1
|
opprrngb |
⊢ ( 𝑅 ∈ Rng ↔ 𝑂 ∈ Rng ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) → 𝑅 ∈ Rng ) |
6 |
1
|
opprsubg |
⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |
7 |
6
|
a1i |
⊢ ( 𝑅 ∈ Rng → ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) ) |
9 |
|
ralcom |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
13 |
10 11 1 12
|
opprmul |
⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) |
14 |
13
|
eleq1i |
⊢ ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) |
15 |
14
|
2ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) |
16 |
9 15
|
bitr4i |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) |
17 |
16
|
a1i |
⊢ ( 𝑅 ∈ Rng → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) |
18 |
8 17
|
anbi12d |
⊢ ( 𝑅 ∈ Rng → ( ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) ) |
19 |
10 11
|
issubrng2 |
⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) ) ) |
20 |
1 10
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
21 |
20 12
|
issubrng2 |
⊢ ( 𝑂 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) ) |
22 |
4 21
|
sylbi |
⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) ) |
23 |
18 19 22
|
3bitr4d |
⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRng ‘ 𝑂 ) ) ) |
24 |
2 5 23
|
pm5.21nii |
⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRng ‘ 𝑂 ) ) |
25 |
24
|
eqriv |
⊢ ( SubRng ‘ 𝑅 ) = ( SubRng ‘ 𝑂 ) |