Step |
Hyp |
Ref |
Expression |
1 |
|
opprunit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
opprunit.2 |
⊢ 𝑆 = ( oppr ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
2 3
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑆 ) ) = ( .r ‘ ( oppr ‘ 𝑆 ) ) |
8 |
4 5 6 7
|
opprmul |
⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
10 |
3 9 2 5
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
11 |
8 10
|
eqtr2i |
⊢ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) |
12 |
11
|
eqeq1i |
⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ↔ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
13 |
12
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
15 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
16 |
3 15 9
|
dvdsr |
⊢ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
17 |
6 4
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑆 ) ) |
18 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) |
19 |
17 18 7
|
dvdsr |
⊢ ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
20 |
14 16 19
|
3bitr4i |
⊢ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ) |
21 |
20
|
anbi2ci |
⊢ ( ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) ↔ ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ) ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
23 |
|
eqid |
⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) |
24 |
1 22 15 2 23
|
isunit |
⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) ) |
25 |
|
eqid |
⊢ ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 ) |
26 |
2 22
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) |
27 |
25 26 23 6 18
|
isunit |
⊢ ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ) ) |
28 |
21 24 27
|
3bitr4i |
⊢ ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
29 |
28
|
eqriv |
⊢ 𝑈 = ( Unit ‘ 𝑆 ) |