Metamath Proof Explorer


Theorem opprunit

Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses opprunit.1 𝑈 = ( Unit ‘ 𝑅 )
opprunit.2 𝑆 = ( oppr𝑅 )
Assertion opprunit 𝑈 = ( Unit ‘ 𝑆 )

Proof

Step Hyp Ref Expression
1 opprunit.1 𝑈 = ( Unit ‘ 𝑅 )
2 opprunit.2 𝑆 = ( oppr𝑅 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 2 3 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 )
5 eqid ( .r𝑆 ) = ( .r𝑆 )
6 eqid ( oppr𝑆 ) = ( oppr𝑆 )
7 eqid ( .r ‘ ( oppr𝑆 ) ) = ( .r ‘ ( oppr𝑆 ) )
8 4 5 6 7 opprmul ( 𝑦 ( .r ‘ ( oppr𝑆 ) ) 𝑥 ) = ( 𝑥 ( .r𝑆 ) 𝑦 )
9 eqid ( .r𝑅 ) = ( .r𝑅 )
10 3 9 2 5 opprmul ( 𝑥 ( .r𝑆 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑥 )
11 8 10 eqtr2i ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 𝑦 ( .r ‘ ( oppr𝑆 ) ) 𝑥 )
12 11 eqeq1i ( ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 1r𝑅 ) ↔ ( 𝑦 ( .r ‘ ( oppr𝑆 ) ) 𝑥 ) = ( 1r𝑅 ) )
13 12 rexbii ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 1r𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr𝑆 ) ) 𝑥 ) = ( 1r𝑅 ) )
14 13 anbi2i ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 1r𝑅 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr𝑆 ) ) 𝑥 ) = ( 1r𝑅 ) ) )
15 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
16 3 15 9 dvdsr ( 𝑥 ( ∥r𝑅 ) ( 1r𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 1r𝑅 ) ) )
17 6 4 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr𝑆 ) )
18 eqid ( ∥r ‘ ( oppr𝑆 ) ) = ( ∥r ‘ ( oppr𝑆 ) )
19 17 18 7 dvdsr ( 𝑥 ( ∥r ‘ ( oppr𝑆 ) ) ( 1r𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr𝑆 ) ) 𝑥 ) = ( 1r𝑅 ) ) )
20 14 16 19 3bitr4i ( 𝑥 ( ∥r𝑅 ) ( 1r𝑅 ) ↔ 𝑥 ( ∥r ‘ ( oppr𝑆 ) ) ( 1r𝑅 ) )
21 20 anbi2ci ( ( 𝑥 ( ∥r𝑅 ) ( 1r𝑅 ) ∧ 𝑥 ( ∥r𝑆 ) ( 1r𝑅 ) ) ↔ ( 𝑥 ( ∥r𝑆 ) ( 1r𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr𝑆 ) ) ( 1r𝑅 ) ) )
22 eqid ( 1r𝑅 ) = ( 1r𝑅 )
23 eqid ( ∥r𝑆 ) = ( ∥r𝑆 )
24 1 22 15 2 23 isunit ( 𝑥𝑈 ↔ ( 𝑥 ( ∥r𝑅 ) ( 1r𝑅 ) ∧ 𝑥 ( ∥r𝑆 ) ( 1r𝑅 ) ) )
25 eqid ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 )
26 2 22 oppr1 ( 1r𝑅 ) = ( 1r𝑆 )
27 25 26 23 6 18 isunit ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ( ∥r𝑆 ) ( 1r𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr𝑆 ) ) ( 1r𝑅 ) ) )
28 21 24 27 3bitr4i ( 𝑥𝑈𝑥 ∈ ( Unit ‘ 𝑆 ) )
29 28 eqriv 𝑈 = ( Unit ‘ 𝑆 )