Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
oppcom.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
9 |
|
oppcom.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
10 |
|
oppcom.o |
⊢ ( 𝜑 → 𝐴 𝑂 𝐵 ) |
11 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 ∈ TarskiG ) |
12 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝑃 ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ 𝑃 ) |
14 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐴 ∈ 𝑃 ) |
15 |
1 2 3 4 5 6 7 8 9 10
|
oppne1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
16 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ¬ 𝐴 ∈ 𝐷 ) |
17 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐷 = ( 𝑥 𝐿 𝑦 ) ) |
18 |
16 17
|
neleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ¬ 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) ) |
19 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
20 |
19
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ¬ 𝑥 = 𝑦 ) |
21 |
|
ioran |
⊢ ( ¬ ( 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) ∨ 𝑥 = 𝑦 ) ↔ ( ¬ 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
22 |
18 20 21
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ¬ ( 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) ∨ 𝑥 = 𝑦 ) ) |
23 |
1 5 3 11 12 13 14 22
|
ncoltgdim2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 DimTarskiG≥ 2 ) |
24 |
1 3 5 7 6
|
tgisline |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
25 |
23 24
|
r19.29vva |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |