Metamath Proof Explorer


Theorem opptgdim2

Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses hpg.p 𝑃 = ( Base ‘ 𝐺 )
hpg.d = ( dist ‘ 𝐺 )
hpg.i 𝐼 = ( Itv ‘ 𝐺 )
hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
opphl.l 𝐿 = ( LineG ‘ 𝐺 )
opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
opphl.g ( 𝜑𝐺 ∈ TarskiG )
oppcom.a ( 𝜑𝐴𝑃 )
oppcom.b ( 𝜑𝐵𝑃 )
oppcom.o ( 𝜑𝐴 𝑂 𝐵 )
Assertion opptgdim2 ( 𝜑𝐺 DimTarskiG≥ 2 )

Proof

Step Hyp Ref Expression
1 hpg.p 𝑃 = ( Base ‘ 𝐺 )
2 hpg.d = ( dist ‘ 𝐺 )
3 hpg.i 𝐼 = ( Itv ‘ 𝐺 )
4 hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
5 opphl.l 𝐿 = ( LineG ‘ 𝐺 )
6 opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
7 opphl.g ( 𝜑𝐺 ∈ TarskiG )
8 oppcom.a ( 𝜑𝐴𝑃 )
9 oppcom.b ( 𝜑𝐵𝑃 )
10 oppcom.o ( 𝜑𝐴 𝑂 𝐵 )
11 7 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝐺 ∈ TarskiG )
12 simpllr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥𝑃 )
13 simplr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑦𝑃 )
14 8 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝐴𝑃 )
15 1 2 3 4 5 6 7 8 9 10 oppne1 ( 𝜑 → ¬ 𝐴𝐷 )
16 15 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → ¬ 𝐴𝐷 )
17 simprl ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝐷 = ( 𝑥 𝐿 𝑦 ) )
18 16 17 neleqtrd ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → ¬ 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) )
19 simprr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥𝑦 )
20 19 neneqd ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → ¬ 𝑥 = 𝑦 )
21 ioran ( ¬ ( 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) ∨ 𝑥 = 𝑦 ) ↔ ( ¬ 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) )
22 18 20 21 sylanbrc ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → ¬ ( 𝐴 ∈ ( 𝑥 𝐿 𝑦 ) ∨ 𝑥 = 𝑦 ) )
23 1 5 3 11 12 13 14 22 ncoltgdim2 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝐺 DimTarskiG≥ 2 )
24 1 3 5 7 6 tgisline ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃 ( 𝐷 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) )
25 23 24 r19.29vva ( 𝜑𝐺 DimTarskiG≥ 2 )