| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oprab2co.1 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝐶  ∈  𝑅 ) | 
						
							| 2 |  | oprab2co.2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝐷  ∈  𝑆 ) | 
						
							| 3 |  | oprab2co.3 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  〈 𝐶 ,  𝐷 〉 ) | 
						
							| 4 |  | oprab2co.4 | ⊢ 𝐺  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ( 𝐶 𝑀 𝐷 ) ) | 
						
							| 5 | 1 2 | opelxpd | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  〈 𝐶 ,  𝐷 〉  ∈  ( 𝑅  ×  𝑆 ) ) | 
						
							| 6 |  | df-ov | ⊢ ( 𝐶 𝑀 𝐷 )  =  ( 𝑀 ‘ 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝐶 𝑀 𝐷 )  =  ( 𝑀 ‘ 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 8 | 7 | mpoeq3ia | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ( 𝐶 𝑀 𝐷 ) )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ( 𝑀 ‘ 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 9 | 4 8 | eqtri | ⊢ 𝐺  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ( 𝑀 ‘ 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 10 | 5 3 9 | oprabco | ⊢ ( 𝑀  Fn  ( 𝑅  ×  𝑆 )  →  𝐺  =  ( 𝑀  ∘  𝐹 ) ) |