Metamath Proof Explorer


Theorem oprab4

Description: Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010)

Ref Expression
Assertion oprab4 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) }

Proof

Step Hyp Ref Expression
1 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥𝐴𝑦𝐵 ) )
2 1 anbi1i ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )
3 2 oprabbii { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) }