Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oprabbidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | oprabbidv | ⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜓 } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabbidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
2 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
3 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
4 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
5 | 2 3 4 1 | oprabbid | ⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜓 } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜒 } ) |