Metamath Proof Explorer


Theorem oprabbidv

Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004)

Ref Expression
Hypothesis oprabbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion oprabbidv ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 oprabbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 nfv 𝑥 𝜑
3 nfv 𝑦 𝜑
4 nfv 𝑧 𝜑
5 2 3 4 1 oprabbid ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜒 } )