Metamath Proof Explorer


Theorem oprabbii

Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypothesis oprabbii.1 ( 𝜑𝜓 )
Assertion oprabbii { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 }

Proof

Step Hyp Ref Expression
1 oprabbii.1 ( 𝜑𝜓 )
2 eqid 𝑤 = 𝑤
3 1 a1i ( 𝑤 = 𝑤 → ( 𝜑𝜓 ) )
4 3 oprabbidv ( 𝑤 = 𝑤 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } )
5 2 4 ax-mp { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 }