Metamath Proof Explorer


Theorem oprabex3

Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004)

Ref Expression
Hypotheses oprabex3.1 𝐻 ∈ V
oprabex3.2 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ) }
Assertion oprabex3 𝐹 ∈ V

Proof

Step Hyp Ref Expression
1 oprabex3.1 𝐻 ∈ V
2 oprabex3.2 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ) }
3 1 1 xpex ( 𝐻 × 𝐻 ) ∈ V
4 moeq ∃* 𝑧 𝑧 = 𝑅
5 4 mosubop ∃* 𝑧𝑢𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 )
6 5 mosubop ∃* 𝑧𝑤𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) )
7 anass ( ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) )
8 7 2exbii ( ∃ 𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑢𝑓 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) )
9 19.42vv ( ∃ 𝑢𝑓 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) )
10 8 9 bitri ( ∃ 𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) )
11 10 2exbii ( ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑤𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) )
12 11 mobii ( ∃* 𝑧𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ∃* 𝑧𝑤𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) )
13 6 12 mpbir ∃* 𝑧𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 )
14 13 a1i ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) → ∃* 𝑧𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) )
15 3 3 14 2 oprabex 𝐹 ∈ V