Metamath Proof Explorer


Theorem opreu2reu

Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023) (Revised by AV, 2-Jul-2023)

Ref Expression
Hypothesis opreu2reurex.a ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝜑𝜒 ) )
Assertion opreu2reu ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 → ∃! 𝑎𝐴 ∃! 𝑏𝐵 𝜒 )

Proof

Step Hyp Ref Expression
1 opreu2reurex.a ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝜑𝜒 ) )
2 1 opreu2reurex ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃! 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃! 𝑏𝐵𝑎𝐴 𝜒 ) )
3 2rexreu ( ( ∃! 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃! 𝑏𝐵𝑎𝐴 𝜒 ) → ∃! 𝑎𝐴 ∃! 𝑏𝐵 𝜒 )
4 2 3 sylbi ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 → ∃! 𝑎𝐴 ∃! 𝑏𝐵 𝜒 )