Metamath Proof Explorer


Theorem opreu2reurex

Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023) (Revised by AV, 1-Jul-2023)

Ref Expression
Hypothesis opreu2reurex.a ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝜑𝜒 ) )
Assertion opreu2reurex ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃! 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃! 𝑏𝐵𝑎𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 opreu2reurex.a ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝜑𝜒 ) )
2 eqcom ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ )
3 vex 𝑎 ∈ V
4 vex 𝑏 ∈ V
5 3 4 opth ( ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝑎 = 𝑥𝑏 = 𝑦 ) )
6 2 5 bitri ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ↔ ( 𝑎 = 𝑥𝑏 = 𝑦 ) )
7 6 imbi2i ( ( 𝜒 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) ↔ ( 𝜒 → ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) )
8 7 a1i ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( ( 𝜒 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) ↔ ( 𝜒 → ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) ) )
9 8 2ralbidva ( ( 𝑥𝐴𝑦𝐵 ) → ( ∀ 𝑎𝐴𝑏𝐵 ( 𝜒 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) ↔ ∀ 𝑎𝐴𝑏𝐵 ( 𝜒 → ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) ) )
10 9 2rexbiia ( ∃ 𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 ( 𝜒 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) ↔ ∃ 𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 ( 𝜒 → ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) )
11 10 anbi2i ( ( ∃ 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃ 𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 ( 𝜒 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) ) ↔ ( ∃ 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃ 𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 ( 𝜒 → ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) ) )
12 1 reu3op ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃ 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃ 𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 ( 𝜒 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) ) )
13 2reu4 ( ( ∃! 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃! 𝑏𝐵𝑎𝐴 𝜒 ) ↔ ( ∃ 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃ 𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 ( 𝜒 → ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) ) )
14 11 12 13 3bitr4i ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃! 𝑎𝐴𝑏𝐵 𝜒 ∧ ∃! 𝑏𝐵𝑎𝐴 𝜒 ) )