Step |
Hyp |
Ref |
Expression |
1 |
|
opreuopreu.a |
⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
2 |
|
elxpi |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) |
3 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) → 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
4 |
|
vex |
⊢ 𝑎 ∈ V |
5 |
|
vex |
⊢ 𝑏 ∈ V |
6 |
4 5
|
op1st |
⊢ ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) = 𝑎 |
7 |
6
|
eqcomi |
⊢ 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) |
8 |
4 5
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) = 𝑏 |
9 |
8
|
eqcomi |
⊢ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) |
10 |
7 9
|
pm3.2i |
⊢ ( 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ∧ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 1st ‘ 𝑝 ) = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑎 = ( 1st ‘ 𝑝 ) ↔ 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑏 = ( 2nd ‘ 𝑝 ) ↔ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
15 |
12 14
|
anbi12d |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ↔ ( 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ∧ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) ) ) |
16 |
10 15
|
mpbiri |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ) |
17 |
16 1
|
syl |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜓 ↔ 𝜑 ) ) |
18 |
17
|
biimprd |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜑 → 𝜓 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝜑 → 𝜓 ) ) |
20 |
19
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) → 𝜓 ) |
21 |
3 20
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) → ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
23 |
22
|
2eximdv |
⊢ ( 𝜑 → ( ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
24 |
2 23
|
syl5com |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 𝜑 → ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
25 |
17
|
biimpa |
⊢ ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) → 𝜑 ) |
26 |
25
|
a1i |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) → 𝜑 ) ) |
27 |
26
|
exlimdvv |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) → 𝜑 ) ) |
28 |
24 27
|
impbid |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 𝜑 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
29 |
28
|
reubiia |
⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) |