Step |
Hyp |
Ref |
Expression |
1 |
|
oprpiece1.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
oprpiece1.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
oprpiece1.3 |
⊢ 𝐴 ≤ 𝐵 |
4 |
|
oprpiece1.4 |
⊢ 𝑅 ∈ V |
5 |
|
oprpiece1.5 |
⊢ 𝑆 ∈ V |
6 |
|
oprpiece1.6 |
⊢ 𝐾 ∈ ( 𝐴 [,] 𝐵 ) |
7 |
|
oprpiece1.7 |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) |
8 |
|
oprpiece1.9 |
⊢ ( 𝑥 = 𝐾 → 𝑅 = 𝑃 ) |
9 |
|
oprpiece1.10 |
⊢ ( 𝑥 = 𝐾 → 𝑆 = 𝑄 ) |
10 |
|
oprpiece1.11 |
⊢ ( 𝑦 ∈ 𝐶 → 𝑃 = 𝑄 ) |
11 |
|
oprpiece1.12 |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ 𝑆 ) |
12 |
1
|
rexri |
⊢ 𝐴 ∈ ℝ* |
13 |
2
|
rexri |
⊢ 𝐵 ∈ ℝ* |
14 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
15 |
12 13 3 14
|
mp3an |
⊢ 𝐵 ∈ ( 𝐴 [,] 𝐵 ) |
16 |
|
iccss2 |
⊢ ( ( 𝐾 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐾 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
17 |
6 15 16
|
mp2an |
⊢ ( 𝐾 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
18 |
|
ssid |
⊢ 𝐶 ⊆ 𝐶 |
19 |
|
resmpo |
⊢ ( ( ( 𝐾 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ⊆ 𝐶 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) ↾ ( ( 𝐾 [,] 𝐵 ) × 𝐶 ) ) = ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) ) |
20 |
17 18 19
|
mp2an |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) ↾ ( ( 𝐾 [,] 𝐵 ) × 𝐶 ) ) = ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) |
21 |
7
|
reseq1i |
⊢ ( 𝐹 ↾ ( ( 𝐾 [,] 𝐵 ) × 𝐶 ) ) = ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) ↾ ( ( 𝐾 [,] 𝐵 ) × 𝐶 ) ) |
22 |
10
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝑃 = 𝑄 ) |
23 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝑥 ≤ 𝐾 ) |
24 |
1 2
|
elicc2i |
⊢ ( 𝐾 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐾 ∈ ℝ ∧ 𝐴 ≤ 𝐾 ∧ 𝐾 ≤ 𝐵 ) ) |
25 |
24
|
simp1bi |
⊢ ( 𝐾 ∈ ( 𝐴 [,] 𝐵 ) → 𝐾 ∈ ℝ ) |
26 |
6 25
|
ax-mp |
⊢ 𝐾 ∈ ℝ |
27 |
26 2
|
elicc2i |
⊢ ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐾 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
28 |
27
|
simp2bi |
⊢ ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) → 𝐾 ≤ 𝑥 ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝐾 ≤ 𝑥 ) |
30 |
27
|
simp1bi |
⊢ ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) → 𝑥 ∈ ℝ ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝑥 ∈ ℝ ) |
32 |
|
letri3 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑥 = 𝐾 ↔ ( 𝑥 ≤ 𝐾 ∧ 𝐾 ≤ 𝑥 ) ) ) |
33 |
31 26 32
|
sylancl |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → ( 𝑥 = 𝐾 ↔ ( 𝑥 ≤ 𝐾 ∧ 𝐾 ≤ 𝑥 ) ) ) |
34 |
23 29 33
|
mpbir2and |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝑥 = 𝐾 ) |
35 |
34 8
|
syl |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝑅 = 𝑃 ) |
36 |
34 9
|
syl |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝑆 = 𝑄 ) |
37 |
22 35 36
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ≤ 𝐾 ) → 𝑅 = 𝑆 ) |
38 |
|
eqidd |
⊢ ( ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ∧ ¬ 𝑥 ≤ 𝐾 ) → 𝑆 = 𝑆 ) |
39 |
37 38
|
ifeqda |
⊢ ( ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) → if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) = 𝑆 ) |
40 |
39
|
mpoeq3ia |
⊢ ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) = ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ 𝑆 ) |
41 |
11 40
|
eqtr4i |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐾 [,] 𝐵 ) , 𝑦 ∈ 𝐶 ↦ if ( 𝑥 ≤ 𝐾 , 𝑅 , 𝑆 ) ) |
42 |
20 21 41
|
3eqtr4i |
⊢ ( 𝐹 ↾ ( ( 𝐾 [,] 𝐵 ) × 𝐶 ) ) = 𝐺 |