| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oprpiece1.1 | 
							⊢ 𝐴  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							oprpiece1.2 | 
							⊢ 𝐵  ∈  ℝ  | 
						
						
							| 3 | 
							
								
							 | 
							oprpiece1.3 | 
							⊢ 𝐴  ≤  𝐵  | 
						
						
							| 4 | 
							
								
							 | 
							oprpiece1.4 | 
							⊢ 𝑅  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							oprpiece1.5 | 
							⊢ 𝑆  ∈  V  | 
						
						
							| 6 | 
							
								
							 | 
							oprpiece1.6 | 
							⊢ 𝐾  ∈  ( 𝐴 [,] 𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							oprpiece1.7 | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							oprpiece1.9 | 
							⊢ ( 𝑥  =  𝐾  →  𝑅  =  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							oprpiece1.10 | 
							⊢ ( 𝑥  =  𝐾  →  𝑆  =  𝑄 )  | 
						
						
							| 10 | 
							
								
							 | 
							oprpiece1.11 | 
							⊢ ( 𝑦  ∈  𝐶  →  𝑃  =  𝑄 )  | 
						
						
							| 11 | 
							
								
							 | 
							oprpiece1.12 | 
							⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐾 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  𝑆 )  | 
						
						
							| 12 | 
							
								1
							 | 
							rexri | 
							⊢ 𝐴  ∈  ℝ*  | 
						
						
							| 13 | 
							
								2
							 | 
							rexri | 
							⊢ 𝐵  ∈  ℝ*  | 
						
						
							| 14 | 
							
								
							 | 
							ubicc2 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 15 | 
							
								12 13 3 14
							 | 
							mp3an | 
							⊢ 𝐵  ∈  ( 𝐴 [,] 𝐵 )  | 
						
						
							| 16 | 
							
								
							 | 
							iccss2 | 
							⊢ ( ( 𝐾  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐵  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐾 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 17 | 
							
								6 15 16
							 | 
							mp2an | 
							⊢ ( 𝐾 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							ssid | 
							⊢ 𝐶  ⊆  𝐶  | 
						
						
							| 19 | 
							
								
							 | 
							resmpo | 
							⊢ ( ( ( 𝐾 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ⊆  𝐶 )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  ↾  ( ( 𝐾 [,] 𝐵 )  ×  𝐶 ) )  =  ( 𝑥  ∈  ( 𝐾 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) ) )  | 
						
						
							| 20 | 
							
								17 18 19
							 | 
							mp2an | 
							⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  ↾  ( ( 𝐾 [,] 𝐵 )  ×  𝐶 ) )  =  ( 𝑥  ∈  ( 𝐾 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  | 
						
						
							| 21 | 
							
								7
							 | 
							reseq1i | 
							⊢ ( 𝐹  ↾  ( ( 𝐾 [,] 𝐵 )  ×  𝐶 ) )  =  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  ↾  ( ( 𝐾 [,] 𝐵 )  ×  𝐶 ) )  | 
						
						
							| 22 | 
							
								10
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝑃  =  𝑄 )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝑥  ≤  𝐾 )  | 
						
						
							| 24 | 
							
								1 2
							 | 
							elicc2i | 
							⊢ ( 𝐾  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐾  ∈  ℝ  ∧  𝐴  ≤  𝐾  ∧  𝐾  ≤  𝐵 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							simp1bi | 
							⊢ ( 𝐾  ∈  ( 𝐴 [,] 𝐵 )  →  𝐾  ∈  ℝ )  | 
						
						
							| 26 | 
							
								6 25
							 | 
							ax-mp | 
							⊢ 𝐾  ∈  ℝ  | 
						
						
							| 27 | 
							
								26 2
							 | 
							elicc2i | 
							⊢ ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐾  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							simp2bi | 
							⊢ ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  →  𝐾  ≤  𝑥 )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝐾  ≤  𝑥 )  | 
						
						
							| 30 | 
							
								27
							 | 
							simp1bi | 
							⊢ ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 31 | 
							
								30
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 32 | 
							
								
							 | 
							letri3 | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( 𝑥  =  𝐾  ↔  ( 𝑥  ≤  𝐾  ∧  𝐾  ≤  𝑥 ) ) )  | 
						
						
							| 33 | 
							
								31 26 32
							 | 
							sylancl | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  ( 𝑥  =  𝐾  ↔  ( 𝑥  ≤  𝐾  ∧  𝐾  ≤  𝑥 ) ) )  | 
						
						
							| 34 | 
							
								23 29 33
							 | 
							mpbir2and | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝑥  =  𝐾 )  | 
						
						
							| 35 | 
							
								34 8
							 | 
							syl | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝑅  =  𝑃 )  | 
						
						
							| 36 | 
							
								34 9
							 | 
							syl | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝑆  =  𝑄 )  | 
						
						
							| 37 | 
							
								22 35 36
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  ≤  𝐾 )  →  𝑅  =  𝑆 )  | 
						
						
							| 38 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  ¬  𝑥  ≤  𝐾 )  →  𝑆  =  𝑆 )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							ifeqda | 
							⊢ ( ( 𝑥  ∈  ( 𝐾 [,] 𝐵 )  ∧  𝑦  ∈  𝐶 )  →  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 )  =  𝑆 )  | 
						
						
							| 40 | 
							
								39
							 | 
							mpoeq3ia | 
							⊢ ( 𝑥  ∈  ( 𝐾 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  =  ( 𝑥  ∈  ( 𝐾 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  𝑆 )  | 
						
						
							| 41 | 
							
								11 40
							 | 
							eqtr4i | 
							⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐾 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  | 
						
						
							| 42 | 
							
								20 21 41
							 | 
							3eqtr4i | 
							⊢ ( 𝐹  ↾  ( ( 𝐾 [,] 𝐵 )  ×  𝐶 ) )  =  𝐺  |