Metamath Proof Explorer


Theorem opsrassa

Description: The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses opsrcrng.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
opsrcrng.i ( 𝜑𝐼𝑉 )
opsrcrng.r ( 𝜑𝑅 ∈ CRing )
opsrcrng.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
Assertion opsrassa ( 𝜑𝑂 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 opsrcrng.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
2 opsrcrng.i ( 𝜑𝐼𝑉 )
3 opsrcrng.r ( 𝜑𝑅 ∈ CRing )
4 opsrcrng.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
5 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
6 5 2 3 psrassa ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg )
7 eqidd ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
8 5 1 4 opsrbas ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ 𝑂 ) )
9 5 1 4 opsrplusg ( 𝜑 → ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g𝑂 ) )
10 9 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( +g𝑂 ) 𝑦 ) )
11 5 1 4 opsrmulr ( 𝜑 → ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r𝑂 ) )
12 11 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( .r𝑂 ) 𝑦 ) )
13 5 2 3 psrsca ( 𝜑𝑅 = ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) )
14 5 1 4 2 3 opsrsca ( 𝜑𝑅 = ( Scalar ‘ 𝑂 ) )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 5 1 4 opsrvsca ( 𝜑 → ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠𝑂 ) )
17 16 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠𝑂 ) 𝑦 ) )
18 7 8 10 12 13 14 15 17 assapropd ( 𝜑 → ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ↔ 𝑂 ∈ AssAlg ) )
19 6 18 mpbid ( 𝜑𝑂 ∈ AssAlg )