Metamath Proof Explorer


Theorem opsrbasOLD

Description: Obsolete version of opsrbaslem as of 1-Nov-2024. The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 30-Aug-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses opsrbas.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
opsrbas.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
opsrbas.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
Assertion opsrbasOLD ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 opsrbas.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 opsrbas.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
3 opsrbas.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
4 df-base Base = Slot 1
5 1nn 1 ∈ ℕ
6 1lt10 1 < 1 0
7 1 2 3 4 5 6 opsrbaslemOLD ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑂 ) )