| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrbas.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | opsrbas.o | ⊢ 𝑂  =  ( ( 𝐼  ordPwSer  𝑅 ) ‘ 𝑇 ) | 
						
							| 3 |  | opsrbas.t | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝐼  ×  𝐼 ) ) | 
						
							| 4 |  | opsrbaslemOLD.1 | ⊢ 𝐸  =  Slot  𝑁 | 
						
							| 5 |  | opsrbaslemOLD.2 | ⊢ 𝑁  ∈  ℕ | 
						
							| 6 |  | opsrbaslemOLD.3 | ⊢ 𝑁  <  ; 1 0 | 
						
							| 7 | 4 5 | ndxid | ⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx ) | 
						
							| 8 | 5 | nnrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 9 | 8 6 | ltneii | ⊢ 𝑁  ≠  ; 1 0 | 
						
							| 10 | 4 5 | ndxarg | ⊢ ( 𝐸 ‘ ndx )  =  𝑁 | 
						
							| 11 |  | plendx | ⊢ ( le ‘ ndx )  =  ; 1 0 | 
						
							| 12 | 10 11 | neeq12i | ⊢ ( ( 𝐸 ‘ ndx )  ≠  ( le ‘ ndx )  ↔  𝑁  ≠  ; 1 0 ) | 
						
							| 13 | 9 12 | mpbir | ⊢ ( 𝐸 ‘ ndx )  ≠  ( le ‘ ndx ) | 
						
							| 14 | 7 13 | setsnid | ⊢ ( 𝐸 ‘ 𝑆 )  =  ( 𝐸 ‘ ( 𝑆  sSet  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑂 ) 〉 ) ) | 
						
							| 15 |  | eqid | ⊢ ( le ‘ 𝑂 )  =  ( le ‘ 𝑂 ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  𝐼  ∈  V ) | 
						
							| 17 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  𝑅  ∈  V ) | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  𝑇  ⊆  ( 𝐼  ×  𝐼 ) ) | 
						
							| 19 | 1 2 15 16 17 18 | opsrval2 | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  𝑂  =  ( 𝑆  sSet  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑂 ) 〉 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  ( 𝐸 ‘ 𝑂 )  =  ( 𝐸 ‘ ( 𝑆  sSet  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑂 ) 〉 ) ) ) | 
						
							| 21 | 14 20 | eqtr4id | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  ( 𝐸 ‘ 𝑆 )  =  ( 𝐸 ‘ 𝑂 ) ) | 
						
							| 22 |  | 0fv | ⊢ ( ∅ ‘ 𝑇 )  =  ∅ | 
						
							| 23 | 22 | eqcomi | ⊢ ∅  =  ( ∅ ‘ 𝑇 ) | 
						
							| 24 |  | reldmpsr | ⊢ Rel  dom   mPwSer | 
						
							| 25 | 24 | ovprc | ⊢ ( ¬  ( 𝐼  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝐼  mPwSer  𝑅 )  =  ∅ ) | 
						
							| 26 |  | reldmopsr | ⊢ Rel  dom   ordPwSer | 
						
							| 27 | 26 | ovprc | ⊢ ( ¬  ( 𝐼  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝐼  ordPwSer  𝑅 )  =  ∅ ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( ¬  ( 𝐼  ∈  V  ∧  𝑅  ∈  V )  →  ( ( 𝐼  ordPwSer  𝑅 ) ‘ 𝑇 )  =  ( ∅ ‘ 𝑇 ) ) | 
						
							| 29 | 23 25 28 | 3eqtr4a | ⊢ ( ¬  ( 𝐼  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝐼  mPwSer  𝑅 )  =  ( ( 𝐼  ordPwSer  𝑅 ) ‘ 𝑇 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  ( 𝐼  mPwSer  𝑅 )  =  ( ( 𝐼  ordPwSer  𝑅 ) ‘ 𝑇 ) ) | 
						
							| 31 | 30 1 2 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  𝑆  =  𝑂 ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) )  →  ( 𝐸 ‘ 𝑆 )  =  ( 𝐸 ‘ 𝑂 ) ) | 
						
							| 33 | 21 32 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑆 )  =  ( 𝐸 ‘ 𝑂 ) ) |