| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrso.o | ⊢ 𝑂  =  ( ( 𝐼  ordPwSer  𝑅 ) ‘ 𝑇 ) | 
						
							| 2 |  | opsrso.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | opsrso.r | ⊢ ( 𝜑  →  𝑅  ∈  Toset ) | 
						
							| 4 |  | opsrso.t | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝐼  ×  𝐼 ) ) | 
						
							| 5 |  | opsrso.w | ⊢ ( 𝜑  →  𝑇  We  𝐼 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 8 |  | eqid | ⊢ ( lt ‘ 𝑅 )  =  ( lt ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑇  <bag  𝐼 )  =  ( 𝑇  <bag  𝐼 ) | 
						
							| 10 |  | eqid | ⊢ { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 11 |  | biid | ⊢ ( ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( le ‘ 𝑂 )  =  ( le ‘ 𝑂 ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | opsrtoslem2 | ⊢ ( 𝜑  →  𝑂  ∈  Toset ) |