| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrso.o | ⊢ 𝑂  =  ( ( 𝐼  ordPwSer  𝑅 ) ‘ 𝑇 ) | 
						
							| 2 |  | opsrso.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | opsrso.r | ⊢ ( 𝜑  →  𝑅  ∈  Toset ) | 
						
							| 4 |  | opsrso.t | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝐼  ×  𝐼 ) ) | 
						
							| 5 |  | opsrso.w | ⊢ ( 𝜑  →  𝑇  We  𝐼 ) | 
						
							| 6 |  | opsrtoslem.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 7 |  | opsrtoslem.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 8 |  | opsrtoslem.q | ⊢  <   =  ( lt ‘ 𝑅 ) | 
						
							| 9 |  | opsrtoslem.c | ⊢ 𝐶  =  ( 𝑇  <bag  𝐼 ) | 
						
							| 10 |  | opsrtoslem.d | ⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 11 |  | opsrtoslem.ps | ⊢ ( 𝜓  ↔  ∃ 𝑧  ∈  𝐷 ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐷 ( 𝑤 𝐶 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 12 |  | opsrtoslem.l | ⊢  ≤   =  ( le ‘ 𝑂 ) | 
						
							| 13 | 6 1 7 8 9 10 12 4 | opsrle | ⊢ ( 𝜑  →   ≤   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ∃ 𝑧  ∈  𝐷 ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐷 ( 𝑤 𝐶 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) } ) | 
						
							| 14 |  | unopab | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 ) }  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) } )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 )  ∨  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) ) } | 
						
							| 15 |  | inopab | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  𝜓 }  ∩  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) } )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜓  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) } | 
						
							| 16 |  | df-xp | ⊢ ( 𝐵  ×  𝐵 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) } | 
						
							| 17 | 16 | ineq2i | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  𝜓 }  ∩  ( 𝐵  ×  𝐵 ) )  =  ( { 〈 𝑥 ,  𝑦 〉  ∣  𝜓 }  ∩  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) } ) | 
						
							| 18 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 19 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 20 | 18 19 | prss | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐵 ) | 
						
							| 21 | 20 | anbi1i | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝜓 )  ↔  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 ) ) | 
						
							| 22 |  | ancom | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝜓 )  ↔  ( 𝜓  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 23 | 21 22 | bitr3i | ⊢ ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 )  ↔  ( 𝜓  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 24 | 23 | opabbii | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜓  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) } | 
						
							| 25 | 15 17 24 | 3eqtr4i | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  𝜓 }  ∩  ( 𝐵  ×  𝐵 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 ) } | 
						
							| 26 |  | opabresid | ⊢ (  I   ↾  𝐵 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) } | 
						
							| 27 |  | equcom | ⊢ ( 𝑥  =  𝑦  ↔  𝑦  =  𝑥 ) | 
						
							| 28 | 27 | anbi2i | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝑦 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) ) | 
						
							| 29 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 30 | 29 | biimpac | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝑦 )  →  𝑦  ∈  𝐵 ) | 
						
							| 31 | 30 | pm4.71i | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝑦 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝑦 )  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 32 | 28 31 | bitr3i | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝑦 )  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 33 |  | an32 | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝑦 )  ∧  𝑦  ∈  𝐵 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  =  𝑦 ) ) | 
						
							| 34 | 20 | anbi1i | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  =  𝑦 )  ↔  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) ) | 
						
							| 35 | 32 33 34 | 3bitri | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  ↔  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) ) | 
						
							| 36 | 35 | opabbii | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) } | 
						
							| 37 | 26 36 | eqtri | ⊢ (  I   ↾  𝐵 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) } | 
						
							| 38 | 25 37 | uneq12i | ⊢ ( ( { 〈 𝑥 ,  𝑦 〉  ∣  𝜓 }  ∩  ( 𝐵  ×  𝐵 ) )  ∪  (  I   ↾  𝐵 ) )  =  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 ) }  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) } ) | 
						
							| 39 | 11 | orbi1i | ⊢ ( ( 𝜓  ∨  𝑥  =  𝑦 )  ↔  ( ∃ 𝑧  ∈  𝐷 ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐷 ( 𝑤 𝐶 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) | 
						
							| 40 | 39 | anbi2i | ⊢ ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( 𝜓  ∨  𝑥  =  𝑦 ) )  ↔  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ∃ 𝑧  ∈  𝐷 ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐷 ( 𝑤 𝐶 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 41 |  | andi | ⊢ ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( 𝜓  ∨  𝑥  =  𝑦 ) )  ↔  ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 )  ∨  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) ) ) | 
						
							| 42 | 40 41 | bitr3i | ⊢ ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ∃ 𝑧  ∈  𝐷 ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐷 ( 𝑤 𝐶 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) )  ↔  ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 )  ∨  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) ) ) | 
						
							| 43 | 42 | opabbii | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ∃ 𝑧  ∈  𝐷 ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐷 ( 𝑤 𝐶 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝜓 )  ∨  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  𝑥  =  𝑦 ) ) } | 
						
							| 44 | 14 38 43 | 3eqtr4ri | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ∃ 𝑧  ∈  𝐷 ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐷 ( 𝑤 𝐶 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) }  =  ( ( { 〈 𝑥 ,  𝑦 〉  ∣  𝜓 }  ∩  ( 𝐵  ×  𝐵 ) )  ∪  (  I   ↾  𝐵 ) ) | 
						
							| 45 | 13 44 | eqtrdi | ⊢ ( 𝜑  →   ≤   =  ( ( { 〈 𝑥 ,  𝑦 〉  ∣  𝜓 }  ∩  ( 𝐵  ×  𝐵 ) )  ∪  (  I   ↾  𝐵 ) ) ) |