| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsrval.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
opsrval.o |
⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) |
| 3 |
|
opsrval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
opsrval.q |
⊢ < = ( lt ‘ 𝑅 ) |
| 5 |
|
opsrval.c |
⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) |
| 6 |
|
opsrval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 7 |
|
opsrval.l |
⊢ ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } |
| 8 |
|
opsrval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 9 |
|
opsrval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 10 |
|
opsrval.t |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) |
| 11 |
8
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 12 |
9
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 13 |
8 8
|
xpexd |
⊢ ( 𝜑 → ( 𝐼 × 𝐼 ) ∈ V ) |
| 14 |
|
pwexg |
⊢ ( ( 𝐼 × 𝐼 ) ∈ V → 𝒫 ( 𝐼 × 𝐼 ) ∈ V ) |
| 15 |
|
mptexg |
⊢ ( 𝒫 ( 𝐼 × 𝐼 ) ∈ V → ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ∈ V ) |
| 16 |
13 14 15
|
3syl |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ∈ V ) |
| 17 |
|
simpl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → 𝑖 = 𝐼 ) |
| 18 |
17
|
sqxpeqd |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑖 × 𝑖 ) = ( 𝐼 × 𝐼 ) ) |
| 19 |
18
|
pweqd |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → 𝒫 ( 𝑖 × 𝑖 ) = 𝒫 ( 𝐼 × 𝐼 ) ) |
| 20 |
|
ovexd |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑖 mPwSer 𝑠 ) ∈ V ) |
| 21 |
|
id |
⊢ ( 𝑝 = ( 𝑖 mPwSer 𝑠 ) → 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) |
| 22 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑖 mPwSer 𝑠 ) = ( 𝐼 mPwSer 𝑅 ) ) |
| 23 |
21 22
|
sylan9eqr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 𝑝 = ( 𝐼 mPwSer 𝑅 ) ) |
| 24 |
23 1
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 𝑝 = 𝑆 ) |
| 25 |
24
|
fveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( Base ‘ 𝑝 ) = ( Base ‘ 𝑆 ) ) |
| 26 |
25 3
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 27 |
26
|
sseq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) ) |
| 28 |
|
ovex |
⊢ ( ℕ0 ↑m 𝑖 ) ∈ V |
| 29 |
28
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
| 30 |
29
|
a1i |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
| 31 |
17
|
adantr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 𝑖 = 𝐼 ) |
| 32 |
31
|
oveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 33 |
|
rabeq |
⊢ ( ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 35 |
34 6
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
| 36 |
|
simpr |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
| 37 |
|
simpllr |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → 𝑠 = 𝑅 ) |
| 38 |
37
|
fveq2d |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( lt ‘ 𝑠 ) = ( lt ‘ 𝑅 ) ) |
| 39 |
38 4
|
eqtr4di |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( lt ‘ 𝑠 ) = < ) |
| 40 |
39
|
breqd |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) ) |
| 41 |
31
|
adantr |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → 𝑖 = 𝐼 ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( 𝑟 <bag 𝑖 ) = ( 𝑟 <bag 𝐼 ) ) |
| 43 |
42
|
breqd |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 ↔ 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 ) ) |
| 44 |
43
|
imbi1d |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 45 |
36 44
|
raleqbidv |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 46 |
40 45
|
anbi12d |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 47 |
36 46
|
rexeqbidv |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 48 |
30 35 47
|
sbcied2 |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 49 |
48
|
orbi1d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) |
| 50 |
27 49
|
anbi12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) ) |
| 51 |
50
|
opabbidv |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| 52 |
51
|
opeq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 = 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) |
| 53 |
24 52
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
| 54 |
20 53
|
csbied |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
| 55 |
19 54
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) = ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 56 |
|
df-opsr |
⊢ ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 57 |
55 56
|
ovmpoga |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ∧ ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ∈ V ) → ( 𝐼 ordPwSer 𝑅 ) = ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 58 |
11 12 16 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ordPwSer 𝑅 ) = ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → 𝑟 = 𝑇 ) |
| 60 |
59
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑟 <bag 𝐼 ) = ( 𝑇 <bag 𝐼 ) ) |
| 61 |
60 5
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑟 <bag 𝐼 ) = 𝐶 ) |
| 62 |
61
|
breqd |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 ↔ 𝑤 𝐶 𝑧 ) ) |
| 63 |
62
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 64 |
63
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 65 |
64
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 66 |
65
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 67 |
66
|
orbi1d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) |
| 68 |
67
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) ) |
| 69 |
68
|
opabbidv |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| 70 |
69 7
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = ≤ ) |
| 71 |
70
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 = 〈 ( le ‘ ndx ) , ≤ 〉 ) |
| 72 |
71
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |
| 73 |
13 10
|
sselpwd |
⊢ ( 𝜑 → 𝑇 ∈ 𝒫 ( 𝐼 × 𝐼 ) ) |
| 74 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ∈ V ) |
| 75 |
58 72 73 74
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |
| 76 |
2 75
|
eqtrid |
⊢ ( 𝜑 → 𝑂 = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |