| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrval2.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | opsrval2.o | ⊢ 𝑂  =  ( ( 𝐼  ordPwSer  𝑅 ) ‘ 𝑇 ) | 
						
							| 3 |  | opsrval2.l | ⊢  ≤   =  ( le ‘ 𝑂 ) | 
						
							| 4 |  | opsrval2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 5 |  | opsrval2.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 6 |  | opsrval2.t | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝐼  ×  𝐼 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 8 |  | eqid | ⊢ ( lt ‘ 𝑅 )  =  ( lt ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑇  <bag  𝐼 )  =  ( 𝑇  <bag  𝐼 ) | 
						
							| 10 |  | eqid | ⊢ { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 11 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( Base ‘ 𝑆 )  ∧  ( ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( Base ‘ 𝑆 )  ∧  ( ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) } | 
						
							| 12 | 1 2 7 8 9 10 11 4 5 6 | opsrval | ⊢ ( 𝜑  →  𝑂  =  ( 𝑆  sSet  〈 ( le ‘ ndx ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( Base ‘ 𝑆 )  ∧  ( ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) } 〉 ) ) | 
						
							| 13 | 1 2 7 8 9 10 3 6 | opsrle | ⊢ ( 𝜑  →   ≤   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( Base ‘ 𝑆 )  ∧  ( ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) } ) | 
						
							| 14 | 13 | opeq2d | ⊢ ( 𝜑  →  〈 ( le ‘ ndx ) ,   ≤  〉  =  〈 ( le ‘ ndx ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( Base ‘ 𝑆 )  ∧  ( ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) } 〉 ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  sSet  〈 ( le ‘ ndx ) ,   ≤  〉 )  =  ( 𝑆  sSet  〈 ( le ‘ ndx ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( Base ‘ 𝑆 )  ∧  ( ∃ 𝑧  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ( 𝑤 ( 𝑇  <bag  𝐼 ) 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∨  𝑥  =  𝑦 ) ) } 〉 ) ) | 
						
							| 16 | 12 15 | eqtr4d | ⊢ ( 𝜑  →  𝑂  =  ( 𝑆  sSet  〈 ( le ‘ ndx ) ,   ≤  〉 ) ) |