Metamath Proof Explorer


Theorem opth2

Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014)

Ref Expression
Hypotheses opth2.1 𝐶 ∈ V
opth2.2 𝐷 ∈ V
Assertion opth2 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 opth2.1 𝐶 ∈ V
2 opth2.2 𝐷 ∈ V
3 opthg2 ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
4 1 2 3 mp2an ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) )