Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opth2.1 | ⊢ 𝐶 ∈ V | |
opth2.2 | ⊢ 𝐷 ∈ V | ||
Assertion | opth2 | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth2.1 | ⊢ 𝐶 ∈ V | |
2 | opth2.2 | ⊢ 𝐷 ∈ V | |
3 | opthg2 | ⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 = 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |