Metamath Proof Explorer


Theorem opthg2

Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opthg2 ( ( 𝐶𝑉𝐷𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 opthg ( ( 𝐶𝑉𝐷𝑊 ) → ( ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐶 = 𝐴𝐷 = 𝐵 ) ) )
2 eqcom ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
3 eqcom ( 𝐴 = 𝐶𝐶 = 𝐴 )
4 eqcom ( 𝐵 = 𝐷𝐷 = 𝐵 )
5 3 4 anbi12i ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ↔ ( 𝐶 = 𝐴𝐷 = 𝐵 ) )
6 1 2 5 3bitr4g ( ( 𝐶𝑉𝐷𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )